Vibrio spp. from *Macrobrachium amazonicum* prawn farming are inhibited by *Moringa oleifera* extracts

Raimunda Sâmia Nogueira Brilhante1*, Jamille Alencar Sales2, Celia Maria de Souza Sampaio2, Francisco Geraldo Barbosa3, Manoel de Araujo Neto Paiva2, Glaucia Morgana de Melo Guedes1, Lucas Pereira de Alencar2, Yago Brito de Ponte3, Terezinha Pinheiro Gomes Bandeira1, José Luciano Bezerra Moreira2, Débora de Souza Collares Maia Castelo-Branco1, Waldemiro de Aquino Pereira-Neto1, Rossana de Aguiar Cordeiro1, José Júlio Costa Sidrim1, Marcos Fábio Gadelha Rocha1,2

1Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
2School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
3Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil

Abstract

Objective: To investigate the in vitro antimicrobial potential of extracts of stem, leaves, flowers, pods and seeds of *Moringa oleifera* (*M. oleifera*) against **Vibrio** spp. from hatchery water and the prawn *Macrobrachium amazonicum*.

Methods: The ethanol extracts of stem, leaves, pods and seeds and chloroform extract of *M. oleifera* were tested against *Vibrio cholerae* (*V. cholerae*) serogroups non-O1/non-O139 (*n* = 4), *Vibrio vulnificus* (*n* = 1) and *Vibrio mimicus* (*n* = 1). *Escherichia coli* (*E. coli*) (ATCC® 25922) was used as quality control. **Vibrio** species were obtained from *Macrobrachium amazonicum* prawns and from hatchery water from prawn farming. The Minimum Inhibitory Concentration (MIC) was determined by broth microdilution method.

Results: The best result was obtained with the ethanol extract of pods, which inhibited three strains of the *V. cholerae*, *Vibrio vulnificus*, *Vibrio mimicus* and *E. coli* (MIC range 0.312–5.000 mg/mL). The chloroform extract of flowers was effective against all *V. cholerae* strains and *E. coli* (MIC range 0.625–1.250 mg/mL). However, the ethanol extracts of stem and seeds showed low effectiveness in inhibiting the bacterial growth.

Conclusions: The extracts of pods, flowers and leaves of *M. oleifera* have potential for the control of **Vibrio** spp. Further studies are necessary to isolate the bioactive compounds responsible for this antimicrobial activity.

1. Introduction

The cultivation of shrimp can be threatened by diseases caused by **Vibrio** species, which can result in up to 100% mortality, 24 h after the appearance of infection [1]. *Vibrio cholerae* (*V. cholerae*), *Vibrio mimicus* (*V. mimicus*) and *Vibrio vulnificus* (*V. vulnificus*) are opportunistic pathogens capable of causing lethal infections in farmed crustaceans when there are stressful environmental conditions, nutritional imbalance and predisposing lesions [2]. Moreover, antimicrobial resistance in these microorganisms has been observed [3].

The emergence of antibiotic resistant bacteria has driven research to find new compounds with antimicrobial properties in plants used in traditional medicine, such as *Moringa oleifera* (*M. oleifera*) (Lam.) [4–10].

M. oleifera is a well-known and widely distributed tree species, belonging to the family Moringaceae [11]. In Brazil it can be found in the Northeast, mainly in the states of Maranhão, Piauí and Ceará [9]. The antimicrobial properties of *M. oleifera* have been attributed to different parts of the plant, such as leaves, flowers, seeds, pods and stems [9,12,13]. The
literature reports the antimicrobial potential of *Moringa* against bacteria and fungi isolated from shrimp farming [59].

Thus, the objective of this study was to evaluate the *in vitro* antimicrobial potential of extracts of stem, leaves, flowers, pods and seeds of *M. oleifera* against *Vibrio* species isolated from hatchery water and *Macrobrachium amazonicum (M. amazonicum)* prawn.

2. Materials and methods

2.1. Extracts

The extracts were obtained from specimens of *M. oleifera* grown in Fortaleza, Ceará, Brazil, and provided by the Laboratory of Applied Phytochemistry, Federal University of Ceará. Stem, leaves, pods and seeds were dried in a heated chamber at 40 °C and then subjected to three successive extractions by cold maceration with ethanol at intervals of 24 h, originating the ethanol extracts, while flowers were dried at 40 °C and then subjected to three successive extractions by cold maceration with chloroform at intervals of 24 h, originating the chloroform extract. After filtration, the respective solvents were evaporated under reduced pressure in a rotary evaporator, leaving only the concentrated constituents extracted from the plant parts [7].

2.2. Strains of *Vibrio* spp.

V. cholerae serogroups non-O1/non-O139 (*n* = 4), *V. mimicus* (*n* = 1) and *V. vulnificus* (*n* = 1), belonging to the bacterial collection of the Laboratory of Emerging and Re-emerging Pathogens of Ceará Federal University, were used in this study. These strains were obtained through the collection of specimens of ovigerous *M. amazonicum* females from Sapiranga Lake (3°48’3.46” S and 38°27’30.83” W), Fortaleza, Ceará, Brazil, and samples of hatchery water from *M. amazonicum* farming, during the larval development stage, at the Laboratory of Shrimp Farming of the State University of Ceará.

2.3. In vitro susceptibility test

The *in vitro* susceptibility test with extracts of *M. oleifera* was performed following the method described by Rocha [7] in 2011, with some modifications. Initially, each extract was dissolved in dimethyl sulfoxide (DMSO) (LGCBiotecnologia, São Paulo, Brazil) and then diluted in Mueller-Hinton broth (Difco®, São Paulo, Brazil) and chloroform (ATCC® 25922) as quality control. The initial concentration of each extract used was 20 mg/mL and the range of concentrations evaluated in the susceptibility test was from 0.01 to 5.00 mg/mL. The microdilution assays were performed in 96 well plates with a final volume of 200 µL, incubated at 35 °C and read after 20 h, according to the method M45-A2 [15]. The inocula were prepared at a turbidity of 0.5 on McFarland scale (108 CFU/mL), and then diluted with Müller-Hinton broth so that each well after inoculation presented approximately 5 × 105 CFU/mL. All assays were performed in duplicate, and for each strain growth control and sterility control of the culture medium were included [14]. The reading was performed with a spectrophotometer (Biotek®, Winooski, United State) at 590 nm and the obtained absorbance values were corrected by the absorbance obtained for each tested extract alone. Only extracts that inhibited the control strain (E. coli ATCC® 25922) were considered to have antimicrobial activity against *Vibrio* spp. Chloramphenicol (Sigma–Aldrich®, Brazil Ltda, São Paulo, Brazil) was used as standard antibiotic, as recommended by the document M100-S22 [16].

2.4. Research licensing

This study was previously approved by the Chico Mendes Institute for Conservation of Biodiversity/Biodiversity Authorization and Information System – SISBIO, under the number 28175-1.

3. Results

The ethanol pod extract showed the best inhibitory activity against isolates from the hatchery water, with MIC values ranging from 0.3125 to 1.250 mg/mL against three strains of *V. cholerae* non-O1/non-O139 (3/4) and an MIC of 5 mg/mL against *V. vulnificus*. This extract also showed inhibitory effect against *V. mimicus* from the digestive tract of *M. amazonicum* and *E. coli* (ATCC® 25922), with MIC values of 1.25 mg/mL and 2.50 mg/mL, respectively (Table 1).

| Table 1 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Source | Species | MIC (mg/mL) | MIC (µg/mL) | | | |
| | | Ethanol stem | Ethanol leaves | Chloroform flowers | Ethanol pods | Ethanol seeds | Chloramphenicol |
| Hatchery water | *V. cholerae* | n.i | 0.078 | 1.25 | 0.312 5 | 5 | 0.5 |
| | *V. cholerae* | n.i | 0.625 | 0.625 | n.i | n.i | 0.5 |
| | *V. cholerae* | n.i | n.i | 0.625 | 1.25 | n.i | 0.5 |
| | *V. vulnificus* | 2.5 | n.i | 0.625 | 0.312 5 | 2.5 | 0.5 |
| | n.i | n.i | n.i | 5 | n.i | 0.5 |
| Prawn | *V. mimicus* | 1.25 | 5 | n.i | 1.25 | n.i | 0.5 |
| | *E. coli* ATCC®M25922 | n.i | 5 | 1.25 | 2.5 | n.i | 4 |
The chloroform extract of flowers was effective against all strains of *V. cholerae* non-O1/non-O139, with MIC values ranging from 0.625 to 1.250 mg/mL, as well as against *E. coli* strain (ATCC® 25922) (MIC 1.25 mg/mL) (Table 1).

The ethanol extract of leaves, in turn, had inhibitory activity against two strains of *V. cholerae* non-O1/non-O139 (2/4), with MIC values of 0.078 and 0.625 mg/mL, and also presented MIC value of 5 mg/mL against *V. minicus* and *E. coli* (Table 1).

The ethanol extract of stem and seeds showed low effectiveness in inhibiting the growth of *Vibrio* spp. strains, as well as no effect against *E. coli*, as shown in Table 1. The assay performed with the standard antibiotic, chloramphenicol, against the control strain *E. coli* (ATCC® 25922) presented MIC value within the range established in the document M100-S22 (17) (Table 1).

4. Discussion

Almost all parts of the *M. oleifera* have multiple industrial and medical uses [17]. The pharmacological potential of this plant has been described in the literature, in particular the antimicrobial activity of the extracts of pods, flowers, leaves, stem and seeds [9,10,18]. Thus, this study aimed to verify the antimicrobial activity of *M. oleifera* against *Vibrio* species, considering that these microorganisms are opportunistic zoonotic pathogens and can cause economical losses to shrimp farming and public health problems, as well [19].

The results of this study demonstrate the antibacterial activity of extracts from different parts of *M. oleifera* against *Vibrio* strains isolated from prawn hatchery water and from *M. amazonicum*. The antibacterial activity of the extracts of leaves, flowers and pods has been reported in other studies against Gram-negative bacteria [10,11]. In addition, the antimicrobial activity of *M. oleifera* extracts has also been observed against *Candida* species isolated from *M. amazonicum* farming in previous study [9].

The extracts of pods, flowers and leaves of *M. oleifera* showed to be more effective, when compared to the other extracts. The ethanol extract of pods presented the best inhibitory activity against species of *Vibrio* spp., and it was the only one capable of inhibiting *V. vulnificus*. The growth of the *E. coli* strain (ATCC® 25922) was also inhibited by this extract. Arora and Onsare [10] verified the effectiveness of the pod extract of *M. oleifera* against the Gram-negative bacteria *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *E. coli* and *Salmonella typhimurium*. However, there are few reports regarding the inhibitory effect of extracts of *M. oleifera* against *Vibrio* species.

Some studies on the history of traditional medicine demonstrated the effectiveness of preparations made of leaves, pods, flowers and seeds against microorganisms that cause human infections [17]. Therefore, studies with *V. minicus*, *V. vulnificus* and *V. cholerae* non-cholera serogroup are important, because these bacteria inhabit estuarine and marine environments and have often been associated with sporadic cases of diarrhea, sepsis and infections, after ingestion of seafood or exposure to contaminated aquatic environment [19-21].

In a previous study by Rocha [9] in 2014, the chloroform extract of flowers presented antifungal action against *Candida* spp. and *Hortaea werneckii* isolated from *M. amazonicum* farming. Based on the observation of this antimicrobial action, we tested the chloroform extract of flowers against *Vibrio* species from the same environment.

The chloroform extract of flowers also inhibit *Vibrio* strains from *M. amazonicum* cultivation water and the control strain. According to Anwar [11], the antibacterial property of *M. oleifera* flowers has been attributed to a substance called pterygospermin [22]. In addition to this compound, other substances, such as benzyl glucosinolates and their cognate isothiocyanate extracted from *M. oleifera* also have antimicrobial properties against bacteria [17]. Therefore, it is worth noting the need to investigate the bioactive compounds of plants that exhibit antimicrobial activity.

The low antimicrobial effectiveness of extracts of seeds and stem of *M. oleifera* found in this study has also been demonstrated by other authors [9,13,23]. Probably, this low antimicrobial effectiveness can be associated with inherent factors of *Vibrio* spp. which decrease or neutralize the activity of the bioactive compounds contained in the seeds and stem of *M. oleifera* [24].

Thus, the ethanol extracts of pods and leaves and the chloroform extract of flowers of *M. oleifera* presented potential to control *Vibrio* spp., although further research is necessary to determine the bioactive compounds responsible for this antimicrobial activity.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

This work was supported by grants from the National Council for Scientific and Technological Development (CNPq; Brazil; Processes 445670/2014-2) and Coordination Office for the Improvement of Higher Education Personnel (AEI-0052-000650100/11).

References

