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RESUMO

Sistemas de posicionamento indoor (IPS) têm atraído muita atenção nos últimos anos, e isso é

motivado principalmente por um grande número de aplicações potenciais. No entanto, continua

sendo um desafio maximizar a precisão desse tipo de sistema, especialmente para estimativas

tridimensionais. Nesta tese, este problema é discutido de forma ampla. Além disso, três soluções

baseadas em inferência Bayesiana são propostas. Entre essas soluções, destaca-se o sistema

intitulado IPS-MAS, que foi desenvolvido a partir de um sistema multiagente composto por

uma rede Bayesiana e uma rede neural profunda. Adicionalmente, esse sistema foi projetado de

forma a combinar os métodos de multilateração e impressão digital, a fim de reduzir a região de

aquisição dos vetores de intensidade de sinal recebido. Além disso, a relação entre a qualidade

do sinal recebido e o nível de ruído, que é influenciada pelo incremento do número de pontos

de acesso e do número de pessoas que se deslocam dentro do ambiente, é considerada pelo

sistema. Os sistemas propostos apresentaram melhor desempenho quando comparado com os

demais, resultando em erros de posicionamento médios de 0,90 m, 1,80 m, 1,82 m, para os

algoritmos IPS-MAS, kmeans-NB e kNN-Bayes, respectivamente (cenário em que a combinação

entre o método multilateração e impressão digital foi considerada somente para o algoritmo

IPS-MAS) e 0,90 m, 1,12 m, 1,19 m, para os algoritmos IPS-MAS, kmeans-NB e kNN-Bayes,

respectivamente (cenário em que a combinação entre o método multilateração e impressão digital

foi considerada para as três soluções).

Palavras-chave: Posicionamento indoor 3D. Inferência Bayesiana. Impressão digital.



ABSTRACT

Indoor positioning systems (IPS) have attracted much attention in recent years, and this is

motivated mainly by a large number of potential applications. However, it remains challenging

to maximize the precision of this type of system, especially for three-dimensional (3D) estimates.

In this research, this problem is discussed in a broad way. In addition, three solutions based on

Bayesian inference are proposed. Among these solutions, we highlight the IPS-MAS system,

which was developed from a multiagent system composed of a Bayesian network and a deep

neural network. Additionally, this proposed system was designed to combine the multilateration

and fingerprint methods in order to reduce the acquisition region of the received signal strength

vectors. Additionally, the relationship between the quality of the received signal and the noise

level, which is influenced by the increase in the number of access points and the number of people

moving within the environment, is considered by the system. The proposed systems presented

better performance when compared to the others, resulting in mean positioning errors of 0.90 m,

1.80 m, 1.82 m, for the IPS-MAS, k means-NB and k means-NB, respectively (scenario where

the combination between the multilateration and fingerprint method was considered only for

the IPS-MAS algorithm) and 0.90 m, 1.12 m, 1.19 m for the algorithms IPS-MAS, k means-NB

and kNN-Bayes, respectively (scenario where the combination between the multilateration and

fingerprint method was considered for the three solutions).

Keywords: 3D indoor positioning. indoor 3D. Bayesian Inference. Fingerprint.
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1 INTRODUÇÃO

A ideia de se implementar um sistema de navegação digital surgiu nos anos 1950,

quando os primeiros satélites foram lançandos. Desde então, sistemas de posicionamento têm

atraído muita atenção, e isso é motivado principalmente pelo grande número de aplicações

potenciais. Neste contexto, um dos sistemas mais utilizados, o sistema de posicionamento global

/ global positioning system (GPS), consiste de um sistema de rádio-navegação desenvolvido

pelo departamento de defesa dos Estados Unidos na década de 1970. O GPS é composto por uma

rede de 24 satélites em órbita a uma altura aproximada de 20.200 Km acima do nível do mar em

seis diferentes rotas orbitais. Os satélites estão em constante movimento, fazendo duas órbitas

completas ao redor da Terra em pouco menos de 24 horas. A figura 1, ilustra a configuração

original do GPS com satélites distribuídos em três anéis.

Figura 1 – Configuração original do GPS com três anéis de oito satélites cada

Fonte: Parkinson e Spilker (1996).

Os satélites transmitem duas ondas portadoras L1 e L2 com frequências derivadas a

partir de uma frequência fundamental ( f = 10,23 MHz), o que resulta nas seguintes frequências

e comprimento de ondas (PARKINSON; SPILKER, 1996):
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• L1 = 154 : f = 1575,42 MHz, comprimento de onda 19,0 cm;

• L2 = 120 : f = 1227,60 MHz, comprimento de onda 24,4 cm.

• Código C/A: O código C / A (course acquisition) é uma sequência de código que se

repete a cada 1 ms. Trata-se de um código pseudo-aleatório transmitido a 1,023 Mbps com

comprimento de onda de 293,1 m;

• Código P (Precision) = 10,23 MHz, comprimento de onda de 29,31 m, período de 266

dias. Esse código é dividido em segmentos de sete dias.

As principais características destes códigos utilizados pelo GPS são apresentadas na

tabela 1. O GPS utiliza o conceito de tempo de chegada / time o f arrival (TOA) para determinar

a posição do usuário. Esse conceito consiste em medir o tempo de propagação de sinais emitidos

por uma constelação de emissores em posições conhecidas em relação ao receptor GPS. Este

intervalo de tempo é, então, multiplicado pela velocidade de propagação do sinal, obtendo-se a

distância emissor-receptor, estimando assim sua posição.

Tabela 1 – Principais características dos códigos utilizados pelo GPS
Atomic Clock (G,Rb) fundamental frequency 10,23 MHz
L1 Carrier Signal 154 × 10,23 MHz
L1 Frequency 1575,42 MHz
L1 Wave length 19.05 cm
L2 Carrier Signal 120 × 10,23 MHz
L2 Frequency 1227,60 MHz
L2 Wave Length 24,45 cm
P-Code Frequency (Chipping Rate) 10.23 MHz (Mbps)
P-Code Wave length 29,31 m
P-Code Period 267 dias : 7 Dias/Satétile
C/A-Code Frequency (Chipping Rate) 1.023 MHz (Mbps)
C/A-Code Wave length 293,1 m
C/A-Code Cycle Length 1 ms
Data Signal Frequency 50 bps
Data Signal Cycle Length 30 s

Fonte: Fell (1994).

A tecnologia de navegação através do GPS, pode ser classificada em quatro gerações

(veja a figura 2). A primeira geração, compreendida entre 1985 e 1995, era composta de

funções básicas e um conjunto limitado de rotas. Na segunda geração, de 1995 a 2000, houve

uma ampliação geográfica (área de cobertura). A terceira geração (2000 a 2005), incluiu

recursos como (KARIMI, 2011): a possibilidade de navegação a partir de dispositivos tais

como assistente pessoal digital / personal digital assistant (PDA), a disponibilidade de rotas
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alternativas, o aprimoramento da inclusão de feedbacks de usuários ao sistema e a disponibilidade

para a população em geral (as gerações anteriores estavam disponíveis apenas em dispositivos

instalados em alguns automóveis de luxo). A geração atual é composta de recursos aprimorados

das gerações anteriores.

Figura 2 – Linha do tempo GPS

Fonte: Karimi (2011).

Apesar do GPS ser considerado um dos sistemas de posicionamento mais bem

sucedidos em ambientes outdoor, a baixa precisão em ambientes fechados, devido à atenuação

do sinal dos satélites, bem como os diversos obstáculos e materiais que compõem esse tipo

de ambiente, tais como: paredes, pisos, divisórias, o torna inadequado para o posicionamento

indoor (veja a figura 3) (KHALAJMEHRABADI et al., 2016).
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Figura 3 – Atenuação do sinal dos satélites devido à ausência de linha de visada direta com o
usuário

Fonte: Khalajmehrabadi et al. (2016).

Neste sentido, muitos estudos têm se dedicado ao tema em questão. Um levan-

tamento dos principais sistemas aplicados a esse problema mostra que eles podem ser divi-

didos em duas principais categorias: os que exigem hardware especializado, tais como siste-

mas baseados em comunicação por luz visível, identificação por rádio frequência / Radio−

Frequency IDenti f ication (RFID) e sinais acústicos (WANT et al., 1992), (WARD et al., 1997),

(PRIYANTHA et al., 2000) e (HOSSAIN et al., 2013). A outra categoria, consiste de sistemas

que fazem uso da infra-estrutura existente no ambiente, por exemplo redes Wi-Fi, conforme:

Bahl e Padmanabhan (2000), Castro et al. (2001), Gwon et al. (2004), Wang et al. (2012), Roos

et al. (2002), Ladd et al. (2002), (LI, 2006), Battiti et al. (2002) e Elnahrawy et al. (2004).

Com relação às técnicas de implementação, essas podem ser classificadas em três métodos:

triangulação, análise de cena (técnica de impressão digital) e proximidade. Esses métodos são

discutidos em LIU et al. (2007) e YASSIN et al. (2017), enquanto que em KRISHNAMURTHY

(2015), uma visão geral das principais tecnologias para posicionamento indoor é apresentada.

Pesquisas experimentais relacionadas a ambientes indoor surgiram no início dos

anos 1990. Seidel e Rappaport (1992), propuseram modelos de perda de percurso em função da

distância, baseados em dados medidos a 914 MHz. Karimi (2011) classifica o desenvolvimento

de sistemas de posicionamento para ambientes fechados / indoor positioning system (IPS) em
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duas gerações. A figura 4 exibe uma linha do tempo com as principais tecnologias abordadas

neste contexto.

Figura 4 – Linha do tempo - IPS

Fonte: Karimi (2011).

A tecnologia da primeira geração, era baseada principalmente no uso de RFID. Neste

caso, o posicionamento é obtido através de nós transmissores e receptores anexados a objetos.

Esta e outras tecnologias são discutidas discutidos no capítulo 2. Christ et al. (1993), foi um

dos primeiros trabalhos a sugerir que o posicionamento de um alvo pode ser obtido a partir da

intensidade do sinal recebido / received signal strength (RSS) como função da distância entre

o receptor e o transmissor. Por volta do início dos anos 2000, novas abordagens e algoritmos

foram propostos, resultando em IPS’s com melhor desempenho. A avaliação do desempenho em

questão pode ser mensurada através de vários critérios, conforme apresentado a seguir:

• Acurácia: é uma das métricas mais importantes em sistemas de posicionamento. É

utilizada como sinônimo de erro de posicionamento. Geralmente, o erro médio da distância

entre a posição estimada e a posição real é adotado como a métrica de desempenho.

Matematicamente isso significa que (KUSHKI et al., 2012):
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εεε
∆
= p− p̂ (1.1)

Em que p̂ = (p̂x, p̂y) e p = (px, py), representam o posicionamento estimado e o real,

respectivamente para o espaço bidimensional (2D). A norma l2, é definida na equação 1.2,

é frequentemente utilizada para estimar o erro de posicionamento.

εεε = ||p− p̂||=
√

(p̂x− px)2 + p̂y− py)2 (1.2)

O erro definido em 1.2, é geralmente calculado sobre várias instâncias de posiciona-

mento, de forma a obter uma medida geral da acurácia do sistema (acurácia do IPS). Este

procedimento é definido na equação 1.3.

εm =
1
N

N

∑
i=1

εεε(i) (1.3)

Em que εεε(i) representa o erro para o i-ésimo posicionamento e N é o número total de

estimativas;

• Precisão: a acurácia fornece uma medida de desempenho somente em função da distância

da posição real do alvo. A precisão, no entanto, fornece uma distribuição do erro da

distância entre a posição estimada e a posição real (LIU et al., 2007). Isso é obtido a

partir da função de distribuição acumulada / cumulative distribution f unction (CDF),

que é comumente descrita no formato de percentil, o que facilita a comparação entre os

algoritmos. Como exemplo, considere os cenários a seguir:

– Cenário I: IPS com precisão de 90% dentro de 2,3 m (90% das estimativas estão

distantes no máximo 2,3 m do posicionamento real) e 95% dentro de 3,5 m.

– Cenário II: IPS com precisão de 50% dentro de 2,3 m e 95% dentro de 3,0m.

Para os cenários acima, poderíamos selecionar o primeiro IPS, dada a maior precisão para

o intervalo 0−2,3 m.

• Complexidade: A complexidade de um sistema de posicionamento pode ser atribuída a

fatores como hardware, software e operação (LIU et al., 2007). Geralmente utiliza-se o

tempo de execução dos algoritmos como medida de complexidade. Uma característica a

ser considerada é o modo como o IPS será executado. Se for executado em um servidor

centralizado, o posicionamento do alvo pode ser estimado rapidamente devido à grande

capacidade de processamento e à fonte de alimentação de energia. Se for realizado no

lado da unidade móvel, os efeitos da complexidade podem ser evidentes. A maioria

das unidades móveis não possuem grande capacidade de processamento e de duração de

bateria;
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• Robuztez: Definimos robustez como a capacidade de um sistema tratar erros durante a

execução. Um IPS robusto deve funcionar mesmo quando parte da informação necessária

estiver indisponível em dado momento ou quando os valores relacionados à entrada

apresentarem um padrão muito distinto do que usualmente é tratado pelo sistema. Em

um cenário como este, é necessário que os algoritmos de posicionamento utilizem outras

informações, como por exemplo, o RSS referentes a outras unidades trasmissoras, de

forma a maximizar a precisão neste tipo de situação;

• Escalabilidade: é um atributo que descreve a capacidade de um IPS se adaptar e funcionar

corretamente diante da necessidade de mudanças na dinâmica dos ambientes, minimizando

a exigência de modificações no sistema ou inclusão de infra-estrutura extra;

• Custo: o custo de um IPS relaciona-se a diversos fatores. Esses fatores incluem tempo,

espaço, peso e energia e custos financeiros (LIU et al., 2007). O fator tempo, por exemplo,

está relacionado à instalação e manutenção do sistema. Energia é outra variável importante.

Tags ativas em sistemas baseados em RFID (como discutido posteriormente), exigem fonte

de energia própria.

Uma observação importante relacionada a esse tema consiste no fato de que a

maioria das pesquisas e tecnologias foram desenvolvidas para uso em escritórios, shoppings,

aeroportos, fábricas e ambientes similares. No entanto, existem outros espaços onde os sistemas

de posicionamento, rastreamento e navegação desempenham um papel central em operações de

segurança e resgate. Esses espaços incluem túneis subterrâneos, minas e até poços e cavernas

submarinas. As características a seguir referentes a túneis possuem grande impacto em IPS’s

projetados para esta finalidade (PEREIRA et al., 2015):

• Alta atenuação do sinal GPS, o que torna esta tecnologia não adequada para este tipo de

ambiente;

• Condições difíceis para a propagação de sinais de rádio dentro dos túneis, como alta

atenuação, reflexão, refração e desvanecimento por múltiplos caminhos;

• Alta temperatura, especialmente em minas e outros espaços onde grandes máquinas são

usadas;

• Alta umidade, característica que afeta a propagação do sinal de radio;

• Presença de gases inflamáveis, levando ao risco de explosões;

• Dificuldade de acesso a fontes de energia elétrica para alimentar a infraestrutura de

posicionamento;
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• Dificuldade ou impossibilidade de instalação ou manutenção de novos equipamentos.

Em Nerguizian et al. (2006) é proposto um IPS baseado em redes neurais artificiais

/ arti f icial neural networks (ANN). Os experimentos foram conduzidos em uma galeria sub-

terrânea de uma antiga mina de ouro em Quebec, no Canadá (veja a figura 5). Para o cenário

em questão, no melhor caso, o IPS proposto, possui como retorno uma precisão de 90% a uma

distância máxima de 2,0m da posição real.

Figura 5 – Galeria subterrânea de uma antiga mina de ouro em Quebec, no Canadá

Fonte: Nerguizian et al. (2006).

Nesse sentido, a escolha do conjunto de métodos e tecnologias a serem utilizadas

para a implementação de um IPS deve considerar o tipo de ambiente em que se deseja obter o

posicionamento do alvo, bem como um conjunto particular de requisitos para o posicionamento

e navegação em função do tipo de ambiente. Schneider (2010) identificou um conjunto de

requisitos para o posicionamento e navegação nesse contexto, incluindo precisão, capacidades

de posicionamento no espaço tridimensional (3D), facilidade de uso, disponibilidade de energia,

custo, entre outros.

Dada a importância desse tema de pesquisa e suas inúmeras aplicações, que incluem

a utilização em sistemas de emergência, posicionamento de robôs móveis e assistência de

navegação em shoppings, escolas, universidades, aeroportos e hospitais, essa tese possui como

objetivo propor novas soluções baseadas em inferência Bayesiana para o projeto e implementação

de sistemas de posicionamento em ambientes fechados, com foco na maximização da precisão de
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sistemas tridimenionais baseado na tecnolgia IEEE 802.11. A primeira dessas soluções, consiste

em uma combinação dos algoritmos k−means e naive Bayes, enquanto que o segundo possui

como base, o algoritmo k-vizinhos mais próximos / k−nearest neighbors (kNN) e o teorema

de Bayes. O terceiro algoritmo foi desenvolvido a partir de um sistema multiagente composto

de uma rede Bayesiana e uma rede neural profunda. Esse sistema foi projetado de forma a

combinar os métodos de multilateração e impressão digital, a fim de reduzir a região de aquisição

dos vetores de intensidade de sinal recebido. Além disso, a relação entre a qualidade do sinal

recebido e o nível de ruído, que é influenciada pelo incremento do número de pontos de acesso

(APs) e do número de pessoas que se deslocam dentro do ambiente, é considerada pelo sistema.

Os experimentos foram conduzidos no primeiro, segundo e terceiro pisos do bloco

acadêmico 707, localizado no campus do Pici, Centro de Tecnologia da Universidade Federal

do Ceará, em Fortaleza, com área total de 3791,05 m2. Essa pesquisa possui as seguintes

contribuições:

• Projeto e implementação de três sistemas de posicionamento para ambientes fechados,

baseados em inferência Bayesiana, com foco na maximização da precisão para o cenário

tridimenional baseado na tecnolgia IEEE 802.11. Os resultados experimentais mostram

que a terceira abordagem proposta apresenta um erro médio de posicionamento inferior a

0,9 m. Esse resultado é mais preciso do que outras abordagens similares (Wi-Fi / Impressão

digital / RSS), que possuem erro médio que varia de 1 a 5m (DARDARI et al., 2015), com

média de 3 a 4m (BAHL; PADMANABHAN, 2000).

• Uso de simulações para verificar a relação entre a precisão do método multilateração e o

incremento do número de pontos de acesso;

• Verificação de como o nível de ruído pode influenciar a precisão dos sistemas de posicio-

namento;

• Discussão e aplicação dos principais algoritmos abordados na literatura.

1.1 Objetivos

1.1.1 Objetivo da Pesquisa

Abordar de forma ampla os principais métodos, tecnologias e desafios para o posicio-

namento em ambientes fechados e com base nesses desafios, propor três soluções fundamentadas

em inferência Bayesiana com o objetivo de maximizar a precisão para o cenário tridimensional
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baseado na tecnolgia IEEE 802.11, de forma a contribuir com um avanço na área de pesquisa.

1.1.2 Objetivos Específicos

• Verificar o efeito da combinação entre os métodos multilateração e impressão digital com

relação à precisão dos sistemas;

• Verificar se o incremento de pontos de acesso (APs) e do número de pessoas no ambiente

pode influenciar no desempenho de sistemas de posicionamento para ambientes fechados;

• Comparar as soluções propostas com as principais abordagens encontradas na literatura.

1.2 Justificativa e Motivação

Vários fatores justificam o desenvolvimento desse trabalho, esses fatores incluem as

inúmeras aplicações potenciais, a imprecisão do GPS em ambientes fechados, devido à ausência

de linha de visada entre o transmissor e o receptor, o fato de que as pessoas passam a maior

parte do tempo em ambientes fechados, sejam em casa, no escritório ou em um ambiente similar.

Além disso, o problema de posicionamento em ambientes fechados ainda continua sendo um

problema em aberto, principalemente em relação a maximização da precisão que é fundamental

para algumas situações específicas. Se para um IPS desenvolvido para localizar pacientes

em um hospital, não é necessário uma precisão que possua como retorno poucos centímetros,

bastando uma precisão da ordem de 1−2 m, um sistema de navegação indoor desenvolvido para

deficientes visuais é muito dependente da precisão. Nesse sentido, essa pesquisa é motivada pelo

desafio da maximização da precisão de sistemas de posicionamento indoor, principalmente para

o cenário 3D.

1.3 Metodologia

• Identificação dos pontos de referência (pontos de coleta de sinais);

• Identificação dos APs;

• Teste das flutuações do sinal a partir de um ponto fixo;

• Realização do levantamento da impressão digital do ambiente e armazenamento das

amostras no banco de dados;

• Implementação dos algoritmos;

• Realização de leituras em diferentes pontos do ambiente e aplicação dos algoritmos;
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• Comparação dos desempenhos dos algoritmos quando apenas o algorimto baseado no

conceito de multiagente, é implementado a partir da combinação entre multilateração e

impressão digital;

• Comparação do desempenho dos algoritmos quando todos os algoritmos baseados em

impressão digital são implementados a partir da combinação desse método com a multila-

teração;

• Verificação da relação entre o incremento do número de APs e a precisão do método de

multilateração.

1.4 Trabalhos Relacionados

Existem vários trabalhos relacionados ao tema de pesquisa em questão. Muitos

desses trabalhos são apresentados ao decorrer desse trabalho.

Na pesquisa conduzida por Liu et al. (2012), é proposta uma abordagem de localiza-

ção assistida por pares para reduzir grandes erros. Este sistema obtém boas estimativas através

do mapeamento conjunto entre dois dispositivos móveis em diferentes posições a partir de um

mapa de assinatura Wi-Fi sujeito a restrições de alcance. Segundo os autores, os experimentos

mostram que essa abordagem pode limitar o erro máximo em 2m. No entanto, este sistema

requer um servidor central para receber medições de sinal e determinar as localizações dos pares

e as distâncias entre eles.

Em Li et al. (2016), uma abordagem chamada FS - kNN é proposta para considerar

o fato de que as diferenças da intensidade de sinal recebido em níveis distintos de RSS não

significam necessariamente diferenças semelhantes na distância geométrica. Os experimentos

relatados mostram que 80% estimativas de posicionamento estão distantes no máximo 2,5 m da

posição real.

No estudo realizado por Roos et al. (2002), sugere-se a aplicação de aprendizado

de máquina para o problema de posicionamento indoor. O algoritmo kNN e dois métodos,

chamados de kernel e histograma, baseados no teorema de Bayes, são propostos como solução

do problema. Os resultados mostram que os métodos probabilísticos produziram resultados

ligeiramente melhores que o algoritmo kNN.

Em Fang et al. (2017) é proposto um algoritmo de posicionamento para redes de

sensores sem fio baseado em um modelo evolucionário multi-objetivo, de forma a minimizar os

efeitos do ruído sobre o sistema posicionamento. A precisão média reportada para este sistema
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foi de 1,02 m no melhor caso.

O estudo conduzido por Gan et al. (2017), é proposto um sistema de posicionamento

baseado em aprendizagem profunda, intitulado DL-IMPS. Este sistema busca resolver o problema

da baixa precisão em relação ao posicionamento em ambientes fechados em cenários com

conjunto de treinamentos insuficientes. Este sistema de posicionamento 2D, segundo os autores

possui um erro médio de 0,52 m e 93,3% das estimativas dentro de um 1 m.

Na pesquisa desenvolvida por Huang e Manh (2016), foi proposto um sistema de

posicionamento baseado em uma função Kernel multidimensional, que foi aplicada de forma

a tratar a dissimilaridade do RSS em regiões vizinhas ocorridas devido as flutuções de sinais

em ambientes fechados, o que pode resultar em baixa precisão na estimativa de posicionamento

do alvo. Segundo os autores, o sistema apresenta melhores resultados em relação a trabalhos

anteriores em ambientes de teste com ruído, movimento dinâmico de objetos, e variação de RSS

multimodal.

Em Bozkurt et al. (2015), diferentes algoritmos para aprendizado de máquina aplica-

dos ao posicionamento indoor, são comparados em relação à precisão e tempo de processamento.

O sistema de posicionamento COMPASS proposto por King et al. (2006) utiliza

conjuntamente a infra-estrutura IEEE 802.11 e bússolas digitais disponíveis em telefones celu-

lares de forma a determinar o posicionamento e orientação do alvo. Segundo os autores este

procedimento conjunto pode representar uma melhora significativa na precisão de sistemas de

posicionamento. O erro médio relatado para essa abordagem é 1,65 m para um ambiente de 312

m2.

Em Cota-Ruiz et al. (2013), os autores introduzem um algoritmo de posicionamento

distribuído para uma rede de sensores sem fio, em que um conjunto de sensores determina

a posição de forma iterativa e colaborativa através de estimativas de alcance e posição para

os vizinhos dentro de sua faixa de comunicação. Os autores concluem que o desempenho da

abordagem proposta é bastante competitiva quando comparado com abordagens similares. No

entanto, a atenuação devido ao desvanecimento por multipercursos ou multicaminhos podem

degradar o desempenho do sistema. Além disso, o método proposto possui grande custo

computacional comparado com sistemas similares.

Um estudo conduzido por Shareef et al. (2007), discute sobre os efeitos do ruído em

sistemas de posicionamento. Nessa pesquisa, compara-se qualitativamente o desempenho de três

diferentes famílias de redes neurais e os resultados são comparados com duas variantes do filtro
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de Kalman que são tradicionalmente usados em sistemas de posicionamento.
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1.6 Organização da Tese

O restante dessa tese está organizada na seguinte maneira: no capítulo II, apresenta-se

os principais métodos para posicionamento para ambientes fechados, que incluem a triangulação,

impressão digital e proximidade. Ao final seção 2.1, uma comparação entre os métodos é

apresentada. Na seção 2.2 apresenta-se uma discussão das principais tecnologias relacionadas ao

posicionamento indoor. Os modelos de propagação e algoritmos mais comuns utilizados nesse

contexto, são discutidos nas seções 2.3 e 2.4 respectivamente.

No capítulo III, a seção 3.1 apresenta uma visão geral sobre o procedimento de

aquisição de sinais e introduz os algoritmos kmeans-NB e kNN-Bayes. Esses algoritmos são

discutidos em detalhes nas seções 3.2 e 3.3.

O capítulo IV, na seção 4.1 discute-se de forma geral sobre a terceiro abordagem

proposta (IPS-MAS). Uma apresentação detalhada desse IPS, incluindo, uma visão geral sobre

sistemas multiagentes, redes Bayesianas, redes neurais e a arquitetura do sistema, é discutida nas

seções 4.2−4.5.

No capítulo V apresenta-se o cenário de testes, a metodologia adotada nos experi-

mentos e os resultados computacionais. Por fim, são apresentadas as conclusões e trabalhos

futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

Neste capítulo, apresenta-se uma visão geral sobre as principais abordagens relacio-

nadas ao posicionamento indoor. A seção 2.1, introduz os principais métodos de posicionamento

indoor. As tecnologias relacionadas ao problema em questão são abordadas na seção 2.2. Na

seção 2.3 os principais modelos de propagação em ambientes indoor são apresentados, e por fim,

os principais algoritmos de baseado em reconhecimento de padrões, são apresentados na seção

2.4.

2.1 Métodos para posicionamento indoor

Na literatura é comum classificar em três os métodos de estimativa de posicionamento

em ambientes fechados: triangulação, impressão digital e proximidade. Esses métodos são

discutidos a seguir:

2.1.1 Triangulação

O método de triangulação utiliza propriedades geométricas baseadas em triângulos

para estimar a localização do usuário. Este método é classificado em duas categorias:

2.1.1.1 Lateração circular

Neste método, o posicionamento do alvo é obtido a partir da sua distância a múltiplos

APs. Usualmente utiliza-se a técnica TOA para estimar essas distâncias. Para um posicionamento

2D é necessário pelo menos três APs como pontos de referência. A figura 6 ilustra este conceito.

Matematicamente, este método pode ser definido da seguinte forma:

Definição 2.1.1. Sejam (x1,y1),(x2,y2) e (x3,y3) as coordenadas cartesianas 2D referentes a

três APs centrados em uma região circular e cujas distâncias (raios) até o alvo (x,y), são dadas

por r2
i , para i = 1,2, · · · ,3, que resulta na equação 2.1.

r2
i = (x− xi)

2 +(y− yi)
2 (2.1)

A posição do alvo é estimada a partir da interseção dos círculos (KUSHKI et al.,

2012). Isso é feito através da aplicação do método dos mínimos quadrados ao sistema de

equações definido em 2.1, que resulta nas equações 2.2 e 2.3.
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r2
i − r2

1 = (x− xi)
2 +(y− yi)

2− (x− x1)
2− (y− y1)

2 (2.2)

= x2
i + y2

i − x2
1− y2

1−2x(xi− x1)−2y(xi− yi) (2.3)

Figura 6 – IPS baseado em lateração circular

Fonte: o autor.

Se considerarmos i = 1,2, · · · ,N, pode-se reescrever o sistema apresentado na equa-

ção 2.3 em forma matricial, resultando na equação 2.4.

HX = B (2.4)

em que X = [x,y]T , descreve as coordenadas que devem ser determinadas,

H =


x2− x1 y2− y1

...
...

xn− x1 yn− y1

 (2.5)

B =
1
2


(r2

1 + r2
2)+(x2

2 + y2
2)− (x2

1 + y2
1)

...

(r2
1 + r2

n)+(x2
n + y2

n)− (x2
1 + y2

1)

 (2.6)

Assim o método dos mínimos quadrados pode ser aplicado de forma a estimar o

posicionamento do alvo através da equação 2.7 (KUSHKI et al., 2012).
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X = (HT H)−1HT B (2.7)

De modo análogo ao caso do 2D, o posicionamento para o espaço tridimensional

(3D), denominado de multilateração (ML), é obtido a partir da estimativa da distância dos APs

ao alvo. Neste caso, necessita-se de pelo menos quatro APs. Centrada em cada um dos APs,

define-se uma esfera com raio r, sendo a localização do usuário definida pela intersecção de tais

esferas. O sistema é análogo ao GPS. A figura 7 ilustra este conceito, equanto que a equação 2.8

descreve matematicamente esta expansão.

Figura 7 – IPS baseado em lateração para o cenário 3D

Fonte: o autor.

r2
i = (x− xi)

2 +(y− yi)
2 +(z− zi)

2 (2.8)

2.1.1.2 Lateração Hiperbólica

O método de lateração hiperbólica utiliza a técnica conhecida como diferença do

tempo de chegada diferença do tempo da chegada / time difference o f Arrival (TDOA), para

obter a posição do alvo. Similar a lateração circular, um sistema de equações pode ser composto

da diferença entre todos os pares de pontos di j, para ∀i, j; i 6= j, conforme a equação definida em

2.9 e 2.10.

di j = ri− r j (2.9)
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=
√
(x− xi)2 +(y− yi)2−

√
(x− x j)2 +(y− y j)2 (2.10)

A solução para este sistema de equações pode ser obtido de forma similar à lateração

circular (KUSHKI et al., 2012) , observando que:

(r1 +di1)
2 = r2

i (2.11)

x2
i + y2

i − x2
1− y2

1−2x(xi− x1)−2y(yi− y1)−di1−2di1r1 = 0 (2.12)

O sistema de equações definido nas equações 2.11 e 2.12, pode ser escrito de forma

matricial como:

HX = B (2.13)

Em que:

X = [x,y,r1]
T , (2.14)

H =


x2− x1 y2− y1 r21

...
...

...

xn− x1 yn− y1 rn1

 (2.15)

B =
1
2


(x2

2 +Y 2
2 )− (x2

1 +Y 2
1 )−d2

21
...

(x2
n +Y 2

n )− (x2
1 +Y 2

1 )−d2
n1

 (2.16)

Aplicando o método dos mínimos quadrados, obtêm-se a estimativa definida na

equação 2.17. O conceito de lateração hiperbólica é ilustrado na figura 8.

X = (HT H)−1HT B (2.17)
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Figura 8 – IPS baseado em lateração hiperbólica

Fonte: Kushki et al. (2012).

2.1.1.3 Angulação

Angulação é uma método que faz uso de uma técnica chamada ângulo de chegada /

Angle o f arrival (AOA), que no contexto de sistemas de posicionamento, estima o posiciona-

mento do alvo através da interseção de vários pares de linhas em relação à direção dos ângulos,

cada uma formada pelo raio circular a partir de um conjunto de APs. Nesta abordagem, o ângulo

θi entre o receptor e transmissor, é obtido conforme a equação 2.18. A figura 9 ilustra este

procedimento.

tanθi =
y− yi

x− xi
i = 1,2, · · · ,k. (2.18)
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Figura 9 – IPS baseado no método de angulação

Fonte: Frattasi e Rosa (2017).

Baseado na equação 2.18, conforme discutido em Frattasi e Rosa (2017) é possível

estimar o posicionamento do alvo através do seguinte procedimento:

(xi− x)sin(θi) = (yi− y)cos(θi) (2.19)

A equação definida em 2.19, pode ser escrita de forma matricial como:

HX = B (2.20)

Em que:

X = [x,y]T , (2.21)

H =


−sin(θ1) cos(θ1)

...
...

−sin(θn) cos(θn)

 (2.22)

B =
1
2


y1 cos(θ1) −x1 sin(θ1)

...
...

y1 cos(θn) −x1 sin(θn)

 (2.23)
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Aplicando o método dos mínimos quadrados, obtêm-se a estimativa definida na

equação 2.24.

X = (HT H)−1HT B (2.24)

Mais detalhes sobre a implementação deste método podem ser obtidos em Werner

(2014), Kushki et al. (2012) e Frattasi e Rosa (2017).

2.1.2 Impressão digital

É uma técnica baseada em reconhecimento de padrões que envolve a divisão do

sistema de posicionamento em duas fases, off-line e on-line. Na fase off-line, os vetores RSS

são coletados com relação a todos os APs detectados. Esta coleta ocorre em várias posições

pré-estabelecidas chamadas de pontos de referência / re f erence points (RP). Assim, cada RP é

representado por sua impressão digital e todos os vetores RSS formam as impressões digitais do

ambiente e são armazenados em um banco de dados para consulta on-line, chamado de radio map

(HE; CHAN, 2016). A fase on-line consiste em ler um vetor RSS e por meio de um algoritmo de

classificação, comparar este vetor com o armazenado no banco de dados durante a fase off-line,

estimando assim o posicionamento do usuário. A figura 10 exibe o modelo de um IPS baseado

na técnica em questão.

Figura 10 – Localização indoor baseada no método de impressão digital

Fonte: o autor.

Definição 2.1.2. Formalmente, o conceito de impressão digital, discutido em Morales et al.

(2015), Khalajmehrabadi et al. (2016) e Au et al. (2013), consiste em dividir o espaço indoor em
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um conjunto de RPs, em que cada RP é identificado por uma coordenada cartesiana p j = (x,y),

ou p j = (x,y,z), ∀ j, 1 6 j 6 N, para sistemas em 2D e 3D, respectivamente. Posicionado em

cada uma destas coordenadas, são coletados amostras de RSS de tamanhos iguais em instantes

de tempo tm, for m = 1,2, · · · ,N, com intensidades RSS dadas por
(

si
j(t1),s

i
j(t2), · · · ,si

j(tM)
)

para cada RP, em que i indica o ponto de acesso / access point (AP) selecionado a partir de

um conjunto L = {AP1,AP2, · · · ,APL}. As amostras RSS coletadas em relação a todos os

APs considerando o tempo tm em p j são armazenadas em um vetor de sinal dado por s =[
(si

j(t1),s
i
j(t2), · · · ,si

j(tN)
]T

. O radio map para este experimento pode ser representado pela

matriz de sinais definida em 2.25.

S(tm) = s1(tm),s2(tm), · · · ,sN(tm) =


s1

1(tm) s1
2(tm) · · · s1

N(tm)

s2
1(tm) s2

2(tm) · · · s2
N(tm)

...
... . . .

sL
1(tm) sL

2(tm) · · · sL
N(tm)

 (2.25)

Na fase on-line, é obtido o vetor de sinais s = {o1,o2, · · · ,oN}, em que oi, i =

1,2, · · · ,N, representa o conjunto de observações RSS. O objetivo é determinar o posicionamento

p j, com base em um algoritmo que compare as leituras realizadas na fase on-line e os valores

armazenados no radio map. Uma desvantagem deste método implementado a partir de Wi-Fi

(um conjunto de especificações para redes locais sem fio baseada no padrão IEEE 802.11),

consiste na possibilidade de um alvo ser mapeado para uma posição diferente do real, devido

a variações do sinal no ambiente. Este problema foi observado em Liu et al. (2012), Sun et

al. (2013), Tsuda et al. (2013), He e Chan (2016), Wang et al. (2012) e Shen et al. (2013).

Uma maior precisão pode ser obtida considerando-se conjuntamente observações temporais

ou espaciais (HE; CHAN, 2016). Padrões temporais refere-se a uma sequência do sinal RSS

observada durante uma trajetória percorrida pelo alvo, enquanto que observações espaciais estão

relacionados à distribuição geográfica de sinais. Essas obervações são úteis para corrigir e

restringir o posicionamento do alvo, tomando como base o RSS, a localização dos APs e a

cobertura do sinal em ambientes com altas flutuações. Neste sentido, o IPS Walkie-markie

proposto em Shen et al. (2013), registra valores de RSS em diferentes regiões com o usuário

em movimento. Como ilustrado na figura 11, pecerbe-se que o RSS tende a aumentar à medida

que o usuário se movimenta da esquerda para a direita ao longo de um caminho coberto por um

AP. Quando o usuário se distancia do AP, a tendência de RSS inverte. Esta sequência de dados

RSS relacionadas a vários trajetos são usados por Walkie-Markie com o objetivo de construir um
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padrão e assim identificar o posicionamento do alvo de forma estática ou em movimento.

Figura 11 – Ilustração do padrão de sinais temporais no sistema Walkie-Markie

Fonte: Shen et al. (2013).

2.1.3 Proximidade

Dentre os três métodos para posicionamento indoor, o método de proximidade é

considerado o mais simples. Trata-se de um método que se baseia puramente na proximidade

do dispositivo móvel a locais previamente conhecidos. Assim, a detecção de proximidade não

fornece uma coordenada como estimativa de posicionamento do alvo. Neste caso, a localização

é dada setorialmente, isto é, o sistema retorna o cômodo ou uma região em que o alvo pode estar

em um determinado momento. A implementação de um IPS a partir deste conceito, consiste em

um ambiente com um grid de antenas com posições conhecidas. Quando um dispositivo móvel

é detectado em movimento, a antena mais próxima é usada para estimar a localização do alvo

(KAVEHRAD et al., 2015). Quando sinais de múltiplas fontes são detectados, a antena com o

sinal mais forte é usada para indicar sua localização. Este procedimento é ilustrado na figura 12.
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Figura 12 – Localização indoor baseada no método de proximidade

Fonte: Kavehrad et al. (2015).

A tabela 2, apresenta as principais vantagens e limitações para os métodos discutidos.

Tabela 2 – Comparação entre os métodos para posicionamento indoor

Triangulação

Vantagens:
1. Não é necessário um conhecimento prévio do comportamento do sinal
no ambiente;
2. Fácil implementação;
Limitações:
1. Baixa precisão devido à alta variação em ambientes fechados;
2. O sistema de posicionamento é altamente dependente do número de APs.
Para um posicionamento 3D, necessita-se de pelo menos quatro APs;
3. É necessário ter conhecimento prévio sobre a localização dos APs.

Impressão di-
gital

Vantagens:
1. Alta precisão;
2. Boa integração com os algoritmos clássicos de classificação;
3. O método lida bem com a variação do sinal em ambientes fechados.
Limitações:
1. É necessário um conhecimento prévio do comportamento do
sinal no ambiente;
2. Necessita-se de uma base de dados robusta.

Proximidade

Vantagens:
1. Método de fácil implementação;
2. Pode ser implementado a partir de uma grande variedade de tecnologias
para posicioamento indoor;
Limitações:
1. Baixa precisão. A estimativa da localização do usuário é dada por uma
região aproximada e não através de uma coordenada;
2. São necessárias várias antenas para uma localização aceitável;
3. É necessário ter conhecimento prévio sobre a localização dos APs.

Fonte: o autor.
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2.2 Tecnologias de comunicação sem fio para posicionamento indoor

2.2.1 WLAN (IEEE 802.11)

A tecnologia Wi-Fi é considerada a mais popular em IPS. Isso se dá porque está

presente em inúmeros ambientes, tais como, residências, escritórios, shoppings e universidades,

além de ser compatível com muitos dispositivos que incluem telefones, laptops e tablets, motivo

pelo qual, o custo com a infraestrutura para implementação de um IPS com esta tecnologia é

minimizada. Contudo, uma desvantagem dessa tecnologia consiste na variabilidade do sinal rela-

cionado a inúmeras váriáveis, tais como a movimentação de pessoas no ambiente, inteferência

entre APs entre outros fatores. Neste sentido, métodos como TOA e TDOA , tornam-se inefi-

cientes quando deseja-se obter a distância de um determinado ponto aos APs baseado em uma

observação RSS (KRISHNAMURTHY, 2015). Por essa razão, métodos baseados em impressão

digital têm sido amplamente discutidos nesse contexto. Bahl e Padmanabhan (2000), foi um

dos primeiros trabalhos a aplicar o conceito de impressão digital baseado em sinal Wi-Fi. Entre

os experimentos realizados pelos autores destacam-se: a relação entre orientação do usuário e

a precisão do sistema; e a obtenção de um parâmetro chamado de fator de atenuação, que foi

estimada a partir da média das diferenças entre os RSS’s com linha de visada entre os transmissor

e receptor e com a obstrução de paredes.

Outro trabalho bastante citado na literatura foi proposto por Wang et al. (2012).

Neste trabalho, os autores propõem um IPS baseado em Wi-Fi chamado de Horus que funciona

da seguinte maneira: dada uma sequência de observações obtidas em cada AP, ordena-se estes

AP em ordem decrescente de acordo com o RSS. Em seguida, seleciona-se o AP com sinal médio

mais forte e então, a partir desse AP, calcula-se a probabilidade de cada posição. Battiti et al.

(2002) propõem o uso de uma ANN perceptron de múltiplas camadas / multilayer perceptron

(MLP) de forma a implementar um mapeamento entre as medições do sinal bruto e a posição do

alvo. Essa rede neural foi implementada com uma camada escondida e treinada com o algoritmo

método de secante em um passo / one-step secant (OSS). A precisão média alcançada foi de

aproximadamente 2,3 m.

2.2.2 WPAN (IEEE 802.15)

Bluetooth é frequentemente classificado como uma tecnologia de rede pessoal sem

fio, sendo a potência de transmissão e alcance muito menor do que uma rede Wi-Fi, ocupando um
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espaço limitado em torno do usuário (geralmente 10 m) (KRISHNAMURTHY, 2015). Sua versão

mais recente, Bluetooth de baixa energia / Bluetooth low energy (BLE), também conhecido

como Bluetooth Smart, pode fornecer dados aprimorados a uma taxa de 24 Mbps com alcance

de cobertura de 70−100m com maior eficiência energética, em comparação com versões mais

antigas (ZAFARI et al., 2016).

Uma das vantagens da utilização do Bluetooth na implementação de um IPS, consiste

no fato dessa tecnologia possuir baixo consumo de energia. Especificamente, este consumo

representa algo em torno de 81-120 mW em comparação com o Wi-Fi, que usa 890-1600 mW

(FROST et al., 2012). Contudo, pelo fato de ter sido projetado de forma a abranger uma pequena

região, sua aplicação IPS destina-se a cenários de pequena escala (FROST et al., 2012).

O Bluetooth têm sido abordado como tecnologia para posicionamento indoor em

muitos trabalhos. Frost et al. (2012), propõem a aplicação da técnica de impressão digital com

Bluetooth resultando em uma precisão média de 2 m. TOPAZ (TADLYS, 2004) é uma IPS

baseado em Bluetooth composto de três tipos de elementos: servidor de posicionamento, pontos

de acesso sem fio e tags sem fio. O desempenho do sistema o torna adequado para rastrear

pessoas e objetos, com uma precisão 95% dentro de 2 m.

2.2.3 Identificação por radiofrequência (RFID)

Consiste em uma tecnologia que utiliza ondas de rádio que rastreia e determina

o posionamento e a orientação de um alvo. Isso é feito, através da leitura de informações

armazenadas em uma tag anexada a um objeto. Essas tags são classificadas em passivas e ativas.

Tags passivas refletem o sinal de rádio frequência / radio f requency (RF) emitido pelo leitor

com a modulação espefífica da tag, sendo possível assim determinar seu posicionamento. Este

tipo tag opera sem a necessidade de bateria, reduzindo o custo de implementação de um sistema

com esta tecnologia. O alcance típico de leitura é de 1−2m e o custo dos leitores é relativamente

alto (LIU et al., 2007). Tags ativas possuem fonte própria de energia, isso permite ampliar a

faixa de varredura do sinal que pode ser detectado pelos leitores.

A desvantagem do uso de RFID é que esta tecnologia não é tipicamente implemen-

tada em smartphones (KRISHNAMURTHY, 2015). SpotOn (HIGHTOWER; BORRIELLO,

2000) é um exemplo de IPS que utiliza essa tecnologia para posicionamento 3D. Outro IPS

conhecido é LANDMARC (NI et al., 2003) cuja a precisão relatada é de aproximadamente 1 m,

considerando 50◦ percentil.
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2.2.4 Dead Reckoning

Este método estima a posição e movimentação de um alvo em ambiente em termos

de velocidade, distância e direção, tomando como base seu posicionamento no passado. Assim

como outros métodos de posicionamento, está sujeito a erros de estimativa, principalmente erro

cumulativo ao decorrer do tempo (BOWDITCH et al., 2002). No entanto, sua precisão pode

ser significativamente melhorada usando métodos híbridos para obter uma nova posição, como

demonstrado em Sharp e Yu (2014). Este método foi considerado por Beauregard e Haas (2006).

Neste trabalho, uma ANN foi aplicada utilizando variáveis como velocidade de deslocamento e

o número de passos dados por usuários, obtidos através de um sensor. A precisão reportada é de

10 metros após 1 Km de movimentação.

2.2.5 Posicionamento Acústico

A implementação de um IPS a partir desta tecnologia, envolve uso de hardware de

forma a instalar nós ultrassônicos em usuários e objetos. Esses nós representam transmissores e

receptores que emitem sinais, obtendo a posição do alvo. Este procedimento é usualmente feito

através de técnicas como TOA. Um trabalho clássico que utiliza esta abordagem é active bat

project (WARD et al., 1997). Neste sistema, utilizou-se a técnica TOA e a precisão reportada é

de poucos centímetros. Este resultado representa uma precisão melhor que sistemas baseados em

Wi-Fi ou Bluetooth, porém um sistema baseado em ultrasom necessita de linha de visada, uma

vez que que som ou ultrasom não podem penetrar paredes (KRISHNAMURTHY, 2015). Além

disso, a maioria dos dispositivos móveis não possuem tecnologia ultrassom. Outras desvantagens,

como a impossibilidade de localizar mais de um alvo ao mesmo tempo, são discutidas em Ward

et al. (1997).

2.2.6 Luz visível

A comunicação por luz visível / visible light communication (VLC) é uma tecnologia

de comunicação sem fio na qual a transmissão de dados é realizada através da luz a 380−780 nm

de comprimento de onda. VLC usa lâmpadas fluorescentes compactas / compact f luorescent

lamp (CFL) e diodo emissor de luz / light emitting diode (LED) para transmitir sinais a 10

kb/s e 500 Mb/s respectivamente (NDJIONGUE et al., 2015). O IPS VL é uma tecnologia

de posicionamento que utiliza a luz visível para determinar a posição de um alvo para fins de
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rastreamento e navegação (SAKPERE et al., 2017). Este sistema, consiste de uma fonte de luz

ou estação base (transmissor), um terminal móvel ou sensor de imagem (receptor) e um canal de

comunicação (ZHANG et al., 2014).

Em Zheng et al. (2017), é proposto um IPS com alta precisão de posicionamento,

baseado em comunicação por luz visível. O erro médio de posicionamento é de 1,72 cm para o

cenário 2D e 3 cm para 3D. Porém a implementação de um IPS a partir desse conceito possui alto

custo, uma vez que transmissores e receptores devem ser projetados baseado nessa tecnologia.

2.3 Modelos de Propagação para Ambientes Fechados

Como discutido no início desse capítulo, a estimativa de posicionamento de usuários

e objetos em ambientes fechados, apresenta muitas dificuldades em relação ao contexto out-

door. Estas dificuldades estão relacionadas à atenuação do sinal devido aos diversos obstáculos

presentes nesse tipo de ambiente. Na literatura existem muitos trabalhos, ambos teóricos e

experimentais, que propuseram a aplicação de modelos de propagação indoor à estimativa do

comportamento do sinal em ambientes fechados. Para maiores detalhes sobre estes modelos veja

Damosso e Correia (1999). Nesta seção são apresentados os principais modelos de propagação

utilizados no contexto indoor.

2.3.1 one-slope model (1SM)

O modelo one-slope model (1SM) (DAMOSSO; CORREIA, 1999), assume que há

uma dependência linear entre a perda de percurso e o logaritmo da distância entre o transmissor

e o receptor. Trata-se um modelo muito simples por não considerar os vários obstáculos

característicos de ambientes fechados, tornando o modelo impreciso para esse tipo de ambiente.

A equação para este modelo é dada por:

L = L0 +10.γ.log(d) (2.26)

Onde L0 representa a perda por percurso a um metro da antena irradiante para

uma determinada a frequência em dB; γ é o coeficiente de propagação e d é a distância entre

transmissor e receptor em metros. Valores típos de L0 e n, para um ambiente similar a um

escritório a uma frequência de 2.45 GHZ, são de L0 = 40,2 e γ = 4,2 (KWIECIEN et al., 2009).

Este modelo é de fácil implementação, uma vez que apenas a distância entre o transmissor e

receptor é utilizado como parâmetro de entrada.
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2.3.2 Cost231 multi-wall model

O modelo modelo de Multi-Parede e Piso / Cost 231 multi-wall model (MWM)

(DAMOSSO; CORREIA, 1999) considera a atenuação do sinal como a perda no espaço livre

adicionada a perda resultante do números de paredes e pisos penetrados entre o transmissor e

receptor. O modelo em questão é dado por:

L = LLF +Lc +
I

∑
i=1

kwiLwi + k
k f +2
k f +1−b

f L f (2.27)

em que:

• LLF = Perda no espaço livre entre transmissor e receptor em dB;

• Lc = Constante de perda em dB;

• kwi = Número de paredes penetradas do tipo i;

• k f = Número de pisos penetrados;

• Lwi = Fator de atenuação nas paredes do tipo i em dB;

• L f = Fator de atenuação entre pisos adjacentes em dB;

• b = Parâmetro empírico;

• I = Número de paredes distintas.

Observou-se que a perda total de piso é uma função não linear do número de pavi-

mentos penetrados (DAMOSSO; CORREIA, 1999). Esta característica é levada em consideração

pela introdução de um fator empírico b. Por razões práticas, o número de paredes distintas deve

ser mantido baixo, pois a diferença entre os vários tipos de paredes em relação a atenuação é

pequena e seu significado no modelo não está claro (DAMOSSO; CORREIA, 1999). Os tipos de

paredes em questão são exibidos na tabela 3, enquanto que os valores típicos de Lw1, Lw2, L f e b,

são exibidos na tabela 4.

Tabela 3 – Tipos de paredes utilizadas no Cost 231 MWM
Tipo de Parede Descrição

Lw1 Parede com espessura < 10cm
Lw2 Parede com espessura > 10cm

Fonte: Damosso e Correia (1999).
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Tabela 4 – Valores para Lw1, Lw2, L f e b em dB - Cost 231 MWM
Multi-Wall (MWM)

Ambiente Lw1 [dB] Lw2 [dB] L f [dB] b
Denso

Um piso
Dois Pisos
Multi-pisos

3,4 6,9 18,3 0,46

Aberto 3,4 6,9 18,3 0,46
Amplo 3,4 6,9 18,3 0,46

Corredor 3,4 6,9 18,3 0,46
Fonte: Damosso e Correia (1999).

2.3.3 ITU indoor Path Loss Model

O modelo de propagação indoor união internacional de telecomunicações / International

Telecommunication Union (ITU) estima a perda por percurso dentro ambiente fechado. Este

modelo é formalmente expresso como (PARKINSON; SPILKER, 2005):

L = 20log( f )+Nplog(d)+L f (np)−28dB (2.28)

Em que L f (np), é o fator referente a perda de penetração do piso e np representa o

número de pisos entre transmissor e o receptor. A Tabela 5 exibe os valores representativos para

o coeficiente de perda no espaço livre entre transmissor e receptor, Np, dado pela ITU, enquanto

que a Tabela 6, fornece os valores referentes a L f (n).

Tabela 5 – Valores de N para o modelo ITU
Frequência Residencial Escritório Comercial
900 MHZ – 33 20
1.2 – 1.3 GHZ – 32 22
1.8 –2 GHZ 28 30 22
4 GHZ – 28 22
5.2 GHZ – 31 –
60 GHZ – 22 17

Fonte: Parkinson e Spilker (1996).
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Tabela 6 – Valores de L f (np) para o modelo ITU
Frequência Residencial Escritório Comercial

900 MHZ –
9(np = 1)
19(np = 2)
24(np = 3)

–

1.8–2GHZ 4np 15+4(np−1) 6+3(np−1)
5.2 GHZ – 16 (np = 1) –

Fonte: Parkinson e Spilker (1996).

2.3.4 Linear attenuation model

Este modelo assim como o 1SM, assume uma dependência linear entre a perda de

percurso e o logaritmo da distância entre o transmissor e o receptor. A diferença fundamental

como relação ao 1SM, consiste na inclusão de um coeficiente de atenuação α , de forma a tornar

o modelo mais preciso. O modelo é dado pela equação 2.29 (DAMOSSO; CORREIA, 1999).

L = LLF +αad (2.29)

Em alguns estudos, termos adicionais relacionados a perdas por paredes são adicio-

nados ao modelo, de forma a melhorar a performance (KARLSSON; LUND, 2018).

2.3.5 Wall and floor factor models

Este modelo dado pela equação 2.30, assume que a perda de percurso para ambientes

fechados é dado pela perda no espaço livre adicionado aos parâmetros n f e nw, que representam

respectivamente, o número de pisos e paredes entre o transmissor e o receptor. Em que l f e lw, são

os fatores de atenuação referentes a pisos e paredes respectivamente (DAMOSSO; CORREIA,

1999).

L = L0 +20.γ.log(d)+n f L f +nwLw (2.30)

2.3.6 Ray launching model

O modelo de lançamento de raios (ray launching), ilustrado na figura 13, é baseado

na ótica geométrica que simula a propagação de ondas de rádio de acordo com os fenômenos

físicos, tais como reflexão, refração e difração. Esta abordagem, verifica se há linha de visada

entre o transmissor e o receptor e então os raios são lançados a apartir de uma fonte transmissora

em direções especificadas. Os raios são rastreados de forma a verificar se eles são interceptados
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por um obstáculo. Se não forem interceptados, novos raios são lançados até que atingam o

receptor ou um número máximo de iterações seja atingido.

Figura 13 – Modelo de lançamento de raios

Fonte: o autor.

2.3.7 Ray tracing model

O traçado de raios (Ray tracing), determina todos os raios que podem atingir um

receptor Rx a partir de um transmissor Tx. O modelo opera em duas etapas (MOLISCH, 2011):

• Todos os raios que podem transferir energia da localização de Tx para a localização de Rx

são determinados. Isso geralmente é feito por meio do princípio da imagem. Os raios que

chegam ao Rx por meio de uma reflexão mostram o mesmo comportamento que os raios de

uma fonte virtual localizada onde uma imagem da fonte original (em relação à superfície

refletora) seria localizada (veja a Figura 14);

• Em um segundo passo, as atenuações (devido à propagação do espaço livre e coeficientes

de reflexão finita) são calculadas, fornecendo assim os parâmetros de todos os componente

multipercurso (multi-path components).
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Figura 14 – Princípio da imagem. Círculos em cinza: fontes virtuais correspondentes a um único
reflexo. Círculos brancos: fontes virtuais correspondentes a reflexões duplas. Linhas
pontilhadas: raios das fontes virtuais para o RX. Linhas tracejadas: reflexões reais.
Linhas sólidas: linha de visada

Fonte: Molisch (2011).

Outros modelos de pequena escala bastantes citados na literatura, incluem: Rayleigh

fading model, Rice fading model e Nakagami-m fading model. Esses modelos são classificados

como estocásticos e são discutidos em detalhes em Damosso e Correia (1999).

2.4 Algoritmos Baseados em Impressão digital

Algoritmos para posicionamento indoor baseados em impressão digital podem ser

classificados em determinísticos e probabilísticos. Algoritmos clássicos determinísticos incluem

kNN e redes neurais artificiais (HUI, 2017) e (ZHENG et al., 2017). A principal vantagem dos

métodos determinísticos é a facilidade de implementação. Esses métodos podem ser facilmente

implementados com base em algoritmos como kNN e a complexidade computacional é fre-

quentemente baixa (HE; CHAN, 2016). Algoritmos probabilísticos são baseados em inferência

Bayesiana e buscam estimar a probabilidade do alvo pertencer a uma posição específica dada

uma observação RSS (LIU et al., 2007). As próximas seções discutem sobre a aplicação desses

algoritmos ao problema posicionamento.
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2.4.1 k-nearest neighbors (k-NN)

O Algorimto kNN é um dos mais conhecidos e utilizados em reconhecimento de

padrões. Trata-se de um algoritmo não paramétrico que classifica um novo objeto baseado na

similaridade em relação às classes. O procedimento de classificação consiste em calcular a

distância entre o objeto observado e as k classes mais próximas. Uma vez identificado as k

classes mais próximas, classificar-se-á a observação à classe mais comum entre seus vizinhos.

Este procedimento é ilustrado na figura 15. Perceba que ao ser obtida uma observação X ,

implementa-se um círculo ao redor dessa observação que capture os 5 vizinhos mais próximos.

Baseado nesta regra o k-NN, então classificaria a observação como pertecente a classe dos pontos

negros.

Figura 15 – Exemplo do algoritmo k-NN para k = 5

Fonte: Duda e Hart (1973).

No caso mais simples deste algoritmo, quando k = 1, chamado de 1 Nearest Neighbor

(1−NN), simplesmente classifica-se o objeto à classe mais próxima. Formalmente o kNN é

definido da seguinte forma:

Definição 2.4.1. Sejam
(
(x(1)1 ,x(1)2 , · · · ,x(1)N ),ω1

)
, · · · ,

(
(x(N)

1 ,x(N)
2 , · · · ,x(N)

N ),ωN

)
, um conjunto

de N pares representando um conjunto de treinamento, em que ωi, i = 1,2, · · · ,N, é defi-
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nido como um conjunto de classes ao qual x( j)
i ∈ Rd, i, j = 1,2, · · · ,N pertence. Considere

y = (y1,y2, · · · ,yN), uma observação não classificada pertencente ao mesmo espaço de x( j)
i , o

objetivo é classificar essa nova observação ao par
(
(x( j)

i ),ωi

)
mais similar. Este procedimento

é realizado calculando-se a distância entre os y e todos os vetores x pertencentes ao conjunto

de treinamento. Existem várias métricas de distância, as mais comuns são (KELLEHER et al.,

2015):

• Distância euclidiana:

d(x,y) =

√
N

∑
i=1

(xi−yi)
2 (2.31)

• Distância Manhattan:

d(x,y) =
N

∑
i=1
|xi−yi| (2.32)

• Distância Minkowski:

d(x,y) =

(
N

∑
i=1
|xi−yi|

p

) 1
p

(2.33)

Matematicamente a distância entre duas instâncias deve satisfazer as seguintes

condições (DUDA; HART, 1973):

• Não-negatividade: d(x,y)≥ 0;

• Reflexividade / identidade: d(x,y) = 0 ⇐⇒ x = y;

• Simetria: d(x,y) = d(y,x);

• Desigualdade triangular: d(x,y)+d(y,z)≥ d(x,z);

O k-NN foi proposto por Fix e Hodges (1951) como uma alternativa aos métodos de

classificação tradicionais, nos casos em que se encontra dificuldade em estimar os parâmetros das

densidades de probalidades. Este algoritmo tornou-se popular, após algumas de suas propriedades

formais serem discutidas por Cover e Hart (1967), que provaram que quando a quantidade de

dados se aproxima do infinito, a classificação de um vizinho mais próximo é limitada pelo dobro

do erro assintótico como a regra de Bayes, independente da métrica de distância aplicada. Isso é

formalmente apresentado no teorema 2.4.1.

Teorema 2.4.1. Seja X um espaço métrico separável. Sejam x, f1e f2, tal que com probabilidade

um x é (i), um ponto de continuidade de f1 e f2, ou (ii) um ponto de medida de probabilidade

maior que zero. Então, o risco NN assintótico R (probabilidade de erro) tem os limites
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R∗ 6 RNN(∞)6 2R∗(1−R∗)

O teorema 2.4.1 implica que a probabilidade de erro do classificador 1−NN é menor

que o dobro da probabilidade de erro da regra de Bayes, para um conjunto de treinamento

suficientemente grande.

Esse algoritmo quando aplicado ao problema de posicionamento indoor, inicialmente

recebe um vetor RSS e busca as k impressões digitais mais próximas ao vetor de entrada. Na

sequência, o algoritmo aloca o alvo na posição que possui uma distribuição de sinal mais similar

ao vetor de entrada, conforme a definição 2.4.1. O algoritmo 1 resume este procedimento.

Algoritmo 1: Aplicação do k-NN ao problema de localização indoor
Input: rp = {rp1,rp2, ..,rpN} ∈ Rn representando um conjunto de pontos de referência.

Um inteiro k, representando o número de vizinhos mais próximos.

Um vetor de sinal s = {RSS1,RSS2, · · · ,RSSN}.

Output: Um posicionamento 2D ou 3D tomando como base o ponto de referência mais

similar.

1: Obtenha os k pontos de referência mais próximos;

2: for i = 1 to N do

3: Calcule a distância entre s e todos RSS’s com relação aos pontos de referência mais

próximos;

4: end for

5: Aloque a observação s no ponto de referência mais próximo e retorne a posição deste

ponto de referência como estimativa de posicionamento do usuário.

2.4.2 Redes Neurais

As redes neurais artificiais foram introduzidas por McCulloch e Pitts (1943). A rede

proposta possuia as seguintes características: as entradas e saídas dos nós binárias; a ativação de

um neurônio é binária; rede conectada por caminhos direcionados e ponderados; cada neurônio

possui um limite u. Se a entrada no neurônio for maior que o limite, o neurônio é ativado; uma

função de ativação e um único neurônio de saída, y. A figura 16 ilustra a arquitetura básica dessa

rede.
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Figura 16 – Arquitetura do modelo McCulloch-Pitts

Fonte: O autor.

Nos anos 1950, Rosenblatt (1958), a partir do modelo desenvolvido por McCulloch

e Pitts (1943), apresentou o conceito de perceptron, um modelo particular de aprendizado

supervisionado, que se tornou fundamental na formação posterior de redes neurais. Durante a

década de 1980, o interesse renovado na rede neural foi alimentado por muitos pesquisadores que

contribuíram para o desenvolvimento de diversas aplicações (MALOBERTI; DAVIES, 2016).

Alguns trabalhos importantes nesse sentido, incluem: Kohonen (1988) e Hopfield (1988).

Uma ANN pode ser definida como um modelo matemático para procesamento de

informação que simula o comportamento do cérebro humano. A estrutura básica de uma ANN

é composta por um conjunto de neurônios artificiais que recebem como entrada um vetor de

sinal x = (x1,x2, · · ·xn). Para cada entrada, atribui-se um peso sináptico, a partir do vetor w =

(wk1,wk2, · · ·wkn) e, em seguida, é obtida a soma referentes às entradas ponderadas. Na etapa

seguinte é aplicada uma função de ativação e um valor de limite que irá gerar o resultado de saída

(KRIESEL, 2007). Existem várias funções de ativação. Algumas dessas funções são ilustradas

na figura 17. A figura 18 ilustra o modelo de rede neural em questão.
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Figura 17 – Diferentes Funções de ativação: (a) Limiar, (b) pseudo-linear, (c) sigmoide e (d)
Gaussiana

Fonte: Jain et al. (1996).

Figura 18 – Modelo básico de neurônio não liear

Fonte: Haykin (1998).

O modelo apresentado na figura 18, possui uma entrada especial chamada de bias

denotada por bk, com o objetivo ajustar o efeito da entrada da função de ativação φ . Assim, a

saída dessa rede é definida matematicamente pela equação 2.34 (HAYKIN, 1998).
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yk = φ(uk +bk) (2.34)

Em que:

uk =
m

∑
j=1

w jx j (2.35)

De um modo geral, as ANN podem ser classificadas em duas categorias (KUMAR,

2004): feed-forward, representada por um grafo acíclico, em que a propagação do sinal ocorre

apenas no sentido da entrada para a saída. A estrutura básica inclui:

• Camada ou nó de entrada: Os nós da camada de entrada são passivos, isso significa que

não há modificação dos dados nesses nós. O objetivo é apenas transmitir os sinais de

entrada para a próxima camada;

• Camadas escondidas ou nós escondidos: realiza todo processamento da informação e

transferem às informações às camadas de saída;

• Camada ou nó de saída: responsável por transmitir o resultado gerado ao mundo externo.

Formalmente uma rede neural feed-forward, pode ser definida como:

Definição 2.4.2. Uma ANN feed-forward consiste em uma tupla T = (G→W,θ , f ,yk), em que

G,→, é um grafo acíclico N×N. Considere i→ j, representando a conexão de um neurônio

i a um neurônio j, com um peso wi ∈ R. Os neurônios sem predecessores são chamados de

neurônios de entrada, enquanto os neurônios intermediários são chamados de camadas escondidas.

Assim uma ANN feed-forward com n nós de entrada e m nós de saída pode ser representada

matematicamente através da equação 2.36.

f : Rn→ Rm, f (x1,x2, · · · ,xm) = (y1,y2, · · · ,yn) (2.36)

A figura 19, ilustra a arquitetura da rede feed-forward simples, conhecida como MLP

com uma camada escondida.

Uma segunda categoria de ANN é chamada de redes recorrentes (KUMAR, 2004)

que, contrariamente ao modelo feed-forward, apresenta pelo menos um laço de realimentação de

neurônios. Este modelo é ilustrado na figura 20.
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Figura 19 – Arquitetura de uma ANN MLP com uma camada escondida

Fonte: Haykin (1998).

Figura 20 – Arquitetura de uma ANN recorrente com uma camada escondida

Fonte: Haykin (1998).

Uma ANN aplicada ao problema de posicionamento indoor consiste em receber
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como entrada um vetor RSS e as coordenadas relacionadas ao mesmo. A saída é um vetor

com dois ou três elementos para o espaço 2D e 3D, respectivamente. O algoritmo 2 resume

o procedimento da aplicação de uma ANN ao problema de posicionamento indoor a partir do

algoritmo backpropagation (discutido no capítulo 4).

Algoritmo 2: ANN MLP aplicada ao problema de posicionamento indoor
Input: s = {RSS1,RSS2, · · · ,RSSN}.

Output: Posicionamento 2D ou 3D.

1: for i = 1 to t do

2: Inicializar os valores dos pesos e neurônios aleatoriamente

3: Apresentar um padrão a camada de entrada da rede

4: Encontrar os valores para as camadas escondidas e a camada de saída

5: Determinar o erro de cálculo (Estimativa de posicionamento - Posicionamento real)

na camada de saída.

6: Ajustar os pesos através da retropropagação dos erros (reduzir o erro a cada iteração)

7: Encontrar o erro na camada escondida

8: Ajustar os pesos e retornar ao passo 2.

9: end for

10: return Posicionamento 2D ou 3D do alvo.

2.4.3 Inferência Bayesiana

A inferência Bayesiana consiste no uso de probabilidades condicionais para obter

conhecimento sobre quantidades desconhecidas, baseado em informações a priori. Este tipo

de inferência é baseada no teorema de Bayes, que foi desenvolvido pelo matemático Thomas

Bayes (BAYES, 1763), como uma consequência de seu interesse em probabilidades inversas. O

teorema 2.4.2, apresenta formalmente este conceito (IVERSEN, 1984).

Teorema 2.4.2. Sejam P(H) a probabilidade a priori de H, isto é, a probabilidade de H ocorrer

antes de D ser observado, P(H | D) a probabilidade a posteriori, em outras palavras, a probabi-

lidade de H ocorrer dado que D ocorreu e P(D | H), uma função chamada de verossimilhança,

que representa a inversa da probabilidade condicional P(H | D), então o teorema de Bayes é

dado pela equação definida em 2.37:
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P(H | D) =
P(D | H)P(H)

P(D)
(2.37)

Considere o problema de se encontrar um estimador pontual para o parâmetro θ

para a população com distribuição f (x | θ). Seja π(θ) a distribuição a priori sobre θ . Suponha

que uma amostra aleatória de tamanho n, denotada por x = (x1,x2, · · · ,xN), é observada. A

distribuição de θ | x, é dada pela equação 2.38 (WALPOLE; MYERS, 2009).

π(θ | x) = f (x|θ)π(θ)
g(x)

(2.38)

Em que g(x) é a distribuição marginal de x, dada por:

g(x) =

 ∑θ f (x|θ)π(θ) Para θ discreto∫
R f (x|θ)π(θ)d(θ) Para θ Continuo

(2.39)

e
∫
R f (x|θ)π(θ)d(θ) é uma generalização da integral de de Riemann, chamada de

integral de Riemann–Stieltjes.

Note que g(x) é constante com relação a θ , o que significa que podemos reescrever

a equação 2.38, como (PUZA, 2015):

π(θ |x) = f (x|θ)π(θ)
ζ

(2.40)

ou da seguinte forma:

π(θ |x) = c f (x|θ)π(θ) (2.41)

em que k = f (y) e c = 1/ζ .

Também podemos escrever que (DUDA; HART, 1973):

π(θ |x) ∝ f (x|θ)π(θ) (2.42)

Em que ∝ representa o símbolo de proporcionalidade. Para enfatizar que a proporci-

onalidade é dada especificamente com relação a θ . tem-se que:

π(θ |x) θ
∝ f (x|θ)π(θ) (2.43)

A equação 2.43, pode ser reescrita resultando na equação 2.44:

π(θ |x) θ
∝ L(x|θ)π(θ) (2.44)

Em que L(x|θ), é chamada de função de verossimilhança. Assim podemos resumir

a equação 2.44, como: probabilidade a posteriori = verossimilhança × probabilidade a priori.

O problema de posicionamento indoor a partir desse conceito é definido da seguinte

forma:
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Definição 2.4.3. Seja s = {o1,o2, · · · ,oN} o vetor RSS observado na fase on-line e Pi(x,y,z),

para i = 1,2, · · · ,N, um conjunto de posições armazenadas no radio map na fase off-line, em

que cada posição é candidata a posição do alvo, tal que
⋃N

i=1 Pi = S representa o espaço de

posicionamento. Selecione Pi se P(Pi | s) > P(P j|s), for i, j = 1,2, · · · ,N and i 6= j. Esta

classificação formalmente é obtida aplicando a equação 2.45, o que resulta em:

P(Pi | s) =
P(s |Pi)P(Pi)

P(s)
=

P(o1,o2, · · · ,oN |Pi)P(Pi)
P(s)

(2.45)

Algoritmo 3: Inferência Bayesiana aplicada ao problema de Posicionamento indoor
Input: s = {o1,o2, · · · ,oN}

Output: Posicionamento indoor 2D ou 3D.

1: for i=1 to N do

2: Calcule P(Pi | s) baseado na equação 2.45.

3: end for

4: Aloque o usuário em Pi(x,y,z), para i = 1,2, · · · ,N, em que

Pi(x,y,z) = argmaxP(Pi | s)

Neste capítulo, foram discutidos os fundamentos matemáticos dos métodos de

triangulação, impressão digital e de proximidade. Uma comparação Qualitativa entre esses

métodos foi apresentada ao final da seção 2.1.

Sistemas de posicionamento para ambientes fechados baseados nas tecnologias Wi-Fi,

Bluetooth, RFID, Dead Reckoning, Posicionamento Acústico e Posicionamento por Luz visível

foram discutidos na seção 2.2. Os modelos de propação e os e algoritmos para posicionamento

indoor, foram abordados nas seções 2.3 e 2.4 respectivamente. No capítulo seguinte, discute-se

em detalhes os dois primeiros IPS’s propostos, kmeans-NB e kNN-Bayes.
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3 SOLUÇÕES PROPOSTAS I E II (kMEANS-NB E kNN-BAYES)

3.1 Introdução

Neste capítulo são propostos dois algoritmos aqui chamados de kmeans-NB e kNN-

Bayes, como soluções ao problema de posicionamento em ambientes fechados. O primeiro

algoritmo proposto consiste em combinar um algoritmo de análise de agrupamentos chamado

de k-means proposto em Lloyd (1982) e uma versão simplificada do teorema de Bayes definido

na equação 2.45, chamada de Naive Bayes (NB) (DUDA; HART, 1973). O segundo algoritmo,

composto por um combinação entre o kNN e o teorema definido em 2.45, determina o posiciona-

mento do alvo, a partir da construção de um estimador que implementa uma região em torno do

RSS médio observado, de forma a capturar um total de k observações mais próximas.

As soluções propostas estão fundamentadas nos conceitos de estatística Bayesiana

e utilizam a técnica de impressão digital discutida no capítulo 2 como estrutura básica para

estimativa de posicionamento. Como discutido no capítulo 2, nesta técnica, os vetores RSS são

obtidos em N RPs com posições 3D predeterminadas. Em cada RP, as medições são obtidas em

relação a todos os APs. Estendendo esse conceito, essas medições são realizadas em diferentes

alturas z = {z1,z2, · · · ,zN} e com o dispositivo móvel direcionado para o norte, sul, leste e oeste.

Este procedimento visa tornar o radio map mais robusto, maximizando assim a precisão do

posicionamento. A matriz definida em 3.1 e a figura 21, exibem este conceito.

RPs =


rp1

O
z1

rp2
O
z1
· · · rpN

O
z1

rp1
O
z2

rp2
O
z2
· · · rpN

O
z2

...
... . . . ...

rp1
O
zN

rp2
O
zN
· · · rpN

O
zN

 (3.1)

em que O = {0◦,90◦,180◦,270◦}, representa as direções norte, sul, leste e oeste.
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Figura 21 – Impressão digital obtida em diferentes alturas

Fonte: o autor.

As seções 3.2 e 3.3, discutem em detalhes os algoritmos

3.2 Método proposto I - kmeans-NB

Na seção anterior, foi definida uma matriz (equação 3.1) de RPs com RSS obtidos

em diferentes alturas e posições. Este procedimento corresponde a primeira etapa da fase off-line.

A partir das observações armazenadas no radio map, a segunda etapa da fase off-line, consiste

em particionar o espaço indoor em subconjuntos disjuntos chamados de clusters. Quando este

procedimento é finalizado, o algoritmo NB é aplicado e o alvo é alocado em um desses clusters,

obtendo-se seu posicionamento a partir do centroide do cluster. Formalmente este procedimento

é definido como:

Definição 3.2.1. Considere o problema de particionamento do espaço indoor (matriz de RPs

definida na equação 3.1) em P clusters que representam os setores ou regiões nos quais os

RPs serão alocados. Para cada um desses clusters define-se um conjunto de centróides c

com coordenadas cartesianas escolhidas aleatoriamente na primeira iteração e com base na

coordenada média dos RPs, a partir da segunda iteração. O particionamento é obtido, calculando-

se a distância entre cada RP e os centroides, atribuindo-se cada RP ao cluster que possui o
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centroide mais próximo. Este procedimento é repetido até que não haja mudança de RPs entre os

clusters. O algoritmo algoritmo k-means, realiza tal particionamento minimizando uma função

objetivo, chamada função erro quadrático, definida pela equação 3.2 (HAN et al., 2006).

E =
K

∑
j=1

∑
rp∈Pi

∥∥rp− c j
∥∥2 (3.2)

em que
∥∥rp− c j

∥∥, representa a distância 3D entre cada RP e os centroides c j. O

algoritmo 4 resume o problema de particionamento a partir do algoritmo k-means, enquanto que

a figura 22, ilustra um exemplo de particionamento indoor composto por 500 RPs em 20 clusters

para o caso 2D.

Figura 22 – Alocação de 500 RPs em 20 clusters com o algoritmo k-means

Fonte: o autor - (exemplo implementado na Linguagem R).
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Algoritmo 4: Algoritmo k-means
Input: Um vetor x = {x1,x2, · · · ,xN} ∈ Rn

Número de clusters

Output: Um conjunto de clusters P.

1: Defina aleatoriamente um conjunto centroide c1,c1, · · · ,ck.

2: for i=1 to K do

3: ci = {x ∈ X | i = argmin1≤ j≤k
∥∥ri− c j

∥∥2}

4: end for

5: for i=1 to K do

6: ci = argminZ∈Rn ∑x∈Ci ‖Z−X‖2

7: end for

8: repeat

9: Retorne ao passo 1

10: until que não haja movimento de dados entre os clusters.

Quando o processo de particionamento é finalizado, têm-se a seguinte configuração:

• Cada RP, possui uma coordenada 3D definitiva Pi(x,y,z), para i = 1,2, · · · ,N e um vetor

s associado a esta coordenada;

• São atribuídas probabilidades para cada um dos clusters, conforme o conhecimento da

frequência de usuários em cada uma desses clusters ou uniformemente, isto é, considerando

que P(Pi), i = 1, · · · ,N sejam equiprováveis.

Após este procedimento, a fase off-line estará finalizada. Na fase online a partir da

leitura do vetor s, o posicionamento do alvo é obtido com base na equação 2.45, resultando na

equação 3.3.

P(Pi|s) =
P(s|Pi)P(Pi)

P(s)
=

P(o1,o2, · · · ,oN |Pi)P(Pi)

P(o1,o2, · · · ,oN)
(3.3)

Pela regra do produto (SCHUM, 1994), têm-se que:

P(o1,o2, · · · ,oN |Pi) = P(o1|o2, · · · ,oN ,Pi)×, · · · ,×P(oN−1|oN ,Pi)P(oN |Pi) (3.4)

De forma a reduzir o custo computacional do sistema com o cálculo da equação 3.3,

quando se faz necessário a aquisição de um grande volume de dados, iremos considerar que

oi ⊥⊥ o j|Pi, ∀i, j, 1 6 i, j 6 N. Isso significa que P(o1,o2, · · · ,oN |Pi) é dado pela equação 3.5.
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P(oi | oi+1, · · · ,oN ,Pi) = P(oi | Pi) =
N

∏
i=1

P(s|Pi) (3.5)

Assim, a probabilidade de alocação do alvo na partição P dado s é simplificado para:

P(P|s)∝ P(Pi,o1, · · · ,oN) (3.6)

∝ P(Pi)×P(o1, · · · ,oN |Pi) (3.7)

∝ P(Pi)×P(o1|P(Pi)×·· ·×P(oN |P(Pi) (3.8)

∝ P(P)
N

∏
i=1

P(s|Pi) (3.9)

A equação 3.9 é uma versão simplificada do teorema de Bayes, conhecido como

naive Bayes. Trata-se de um modelo de rede Bayesiana (discutido no capítulo 4) em que os

atributos estão associados apenas a classe, representada como o nó raiz da rede. Para mais

detalhes sobre este classificador veja: Friedman et al. (1997) e Duda e Hart (1973).

Após a identificação da partição que resulta em máxima probabilidade, estima-se a

posição do usuário a partir da coordenada do centroide dos RPs.

Existem vários métodos para estimativa de P(s|P). Dois métodos amplamente

utilizados, são o método histograma e kernel (WASSERMAN, 2006) e (SILVERMAN, 1986).

Estes métodos são discutidos a seguir:

Definição 3.2.2. Considere P(s|P) como uma função densidade de probabilidade (FDP) denotada

por fX(x) que deve ser estimada com o mínimo de suposições possíveis através de um estimador

f̂X(x), em que a qualidade da estimativa é obtida através da equação 3.10 (WASSERMAN,

2006).

R = E(L) (3.10)

em que:

L =
∫
( f̂X(x)− fX(x))2dx (3.11)

L(h) =
∫
( f̂X(x)− fX(x))2dx =

∫
f̂ 2
x (x)dx−2

∫
f̂X(x) fX(x)dx+

∫
f 2(x)dx (3.12)

Em que h é um parâmetro de suavização dos dados não negativo chamado de

bandwidth (largura de banda). O último termo da equação 3.12, não depende de h, assim,

obtêm-se (WASSERMAN, 2006):
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J(h) =
∫
( f̂X(x)− fX(x))2dx =

∫
f̂ 2
x (x)dx−2

∫
f̂X(x)dx (3.13)

em que:

E(J(h)) = R(h)+ c (3.14)

Definição 3.2.3. Seja f̂(−1)(x) o estimador de densidade após ter removido a i-ésima observação.

Definimos Ĵ(h) como um score chamado de validação cruzada do risco dado pela equação 3.15.

Ĵ(h) =
∫ (

f̂X(x)
)2

dx− 2
N

N

∑
i=1

f̂(−1)(xi) (3.15)

O método mais simples e antigo para estimativa de probabildiade é conhecido como

histograma. Este método subdivide o espaço de fX(x) com suporte [0,1] em M bins de tamanhos

iguais, dados pela equação 3.16.

B1 =

[
0,

1
M

)
,B2 =

[
1
M
,

2
M

)
, · · · ,BM =

[
M−1

M
,1
]

(3.16)

Definição 3.2.4. Seja h = 1
M , p j =

∫
B j

fX(x)dx e Y = ∑
N
i=1 I(xi ∈ B j), a estimativa de fX(x) a

partir do método histograma é dado pela equação 3.17 (WANG et al., 2012).

f̂X(x) =
N

∑
i=1

p̂ j

h
I(xi ∈ B j) (3.17)

A figura 23 ilustra a distribuição do RSS em uma região específica para diferentes

números de bins.

Figura 23 – Histogramas do RSS em uma região específica para diferentes números de bins

Fonte: o autor - (exemplo implementado na Linguagem R).
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Para estimar a P(s|P), a partir deste conceito, obtém-se a distribuição de frequência

dos sinais no ambiente. O objetivo é verificar a frequência de cada intervalo RSS em relação a

todas as partições P.

Outro método bastante conhecido, é a estimativa de densidade kernel (WASSER-

MAN, 2006). Esse método estima fX(x) determimando o número de observações RSS dentro de

uma região fixa com comprimento igual a b centrada na média de s, representada como s. Este

conceito é ilutrado na figura 24, com uma região centrada em x com b = 0,5.

Definição 3.2.5. Seja Xi, i = 1,2, · · · ,N com N ∈ N, denotando uma amostra de N observações,

K : R→ R, a estimativa de densidade kernel é dada pela equação 3.18 (WASSERMAN, 2006):

fX(x) =
1
n

N

∑
i=1

1
h

K
(

x−Xi

h

)
(3.18)

em que: n representa o tamanho da amostra e K(•) é a função Kernel que deve

satisfazer as seguintes condições:

(i) K não negativo;

(ii)
∫
RKX(x)dx = 1;

(iii) h > 0.

Uma função amplamente utilizada neste caso, é o Kernel guassiana. Assim, a esti-

mativa P(s|P) pode ser modelada através de uma distribuição normal (essa e outras distribuições

são apresentadas no anexo A) dada pela equação 3.19 (ROOS et al., 2002):

fx(x) =
1
N

N

∑
i=1

1
h
√

2π
exp

[
−1

2

(
o−oi

h

)2
]

(3.19)

Figura 24 – Estimativa de fX(x) a partir do método kernel

Fonte: Theodoridis e Koutroumbas (2008).
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Uma função geral para K(•), é dada pela equação 3.20 (FUKUNAGA, 1990).

K(X) =
mΓ
(n

2

)(n+2
2m

)
(nπ)n/2Γn/2+1

( n
2m

) · 1

rn |A|1/2 exp

[
−

{
Γ
(n+2

2m

)
nΓ
( n

2m

)XT (r2A)−1X

}m]
(3.20)

em que m é o parâmetro que determina a forma da função kernel. Para m = 1, a

equação 3.20, se reduz a kernel gaussiana. Quando m→ ∞, a equação 3.20 se reduz a uma

kernel uniforme (hiperelíptica). A matriz A determinada a forma do hiper-elipsóide, r, controla

o tamanho ou volume do kernel e Γ(α) é a função gama dada pela equação 3.21.

Γ(α) =
∫

∞

0
xα−1e−βxdx (3.21)

A implementação do IPS em questão é resumida no algoritmo 5 e na figura 25.

Algoritmo 5: Algoritmo kmeans-NB para posicionamento indoor 3D
Input: rp = {rp1,rp2, ..,rpN} ∈ Rn que representa o vetor de pontos de referência.

Número de clusters P representando o número de clusters.

Um vetor de sinal s = {o1,o2, · · · ,oN}.

Output: Posicionamento 3D a partir do centroide das coordenadas dos RPs

1: Defina um conjunto de centroides c1,c2, · · · ,cP com coordenadas aleatórias para cada

cluster.

2: repeat

3: Calcule as distâncias entre os RPs e os centroides usando a equação 3.2 e atribua

cada ponto ao cluster com centroide mais próximo.

4: Recalcule os centroides de cada cluster com base nas coordenadas dos RPs.

5: until que não haja movimento de dados entre os clusters.

6: for i=1 to N do

7: Calcule P(P|s) baseado na equação 3.9.

8: end for

9: Aloque o usuário ao cluster que resulta em máxima probabilidade.

10: Obtenha o centroide dos RPs.

11: Retorne o posicionamento 3D baseado na coordenada obtidas no passo 10.
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Figura 25 – Arquitetura do IPS kmeans-NB

3.3 Método II - KNN-Bayes proposto

A implementação do IPS com base neste método, consiste na estimativa da probabi-

lidade a posteriori na equação 2.45 através do algoritmo kNN.

Na fase online, após a leitura do vetor s, define-se uma região (aqui discutida como

uma hiperesfera com volume V ) centrada em s e que capture k vizinhos mais próximos de s.

Usualmente o valor de k deve ser pequeno comparado ao número total de observações RSS no

ambiente, denotado por N (FUKUNAGA, 1990). Em Gramacki (2017), é sugerido k ≈
√
N.

Após o procedimento de captura dos pontos mais similares, verifica-se a frequência

de cada observação com relação a todos os setores (regiões de alocação do usuário). Assim, um

setor é selecionado para se estimar o posicionamento do alvo, se possui a maior frequência de

observações entre todos os setores. Este procedimento de estimativa de densidade para N = 25 e

k = 5 / N= 16 e k = 4, é apresentado nas figuras 26 e 27, para os casos 2D e 3D, respectivamente.

Formalmente esse procedimento de estimativa de densidade aplicado ao problema

de posicionamento indoor para o espaço Rd , é definido como:

Definição 3.3.1. Sejam o1,o2, · · · ,oN , o total de observações RSS no setor i, para i = 1,2, · · · ,N,

diremos que
⋃N

i=1 oi = n, Rd
k (x) é a distância da estimativa entre s e os k vizinhos mais próximos

e cd é o espaço ocupado (V ) para uma hiperesfera em d dimensões, dada pela equação 3.22

(FUKUNAGA, 1990).

cd =
∫

Rs

dY =
πd/2

(d/2)!
=

πd/2

Γ(d/2+1)
(3.22)
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Dessa forma, a probabilidade do setor i, para i = 1,2, · · · ,N, é dado pela equação

3.23 (DUDA; HART, 1973) e a probabilidade de s é estimada como a razão entre as observações

capturadas pela hiperesfera e o produto entre N e V . Dessa forma a estimativa de densidade é

dada pela equação 3.24 (THEODORIDIS; KOUTROUMBAS, 2008).

P(S) =
n

N
(3.23)

P(s) =
k

NcdR
d
k (x)

=
k

NV
(3.24)

Figura 26 – Estimativa de P(x) para d = 2 e k = 5

Fonte: o autor.

Figura 27 – Estimativa de P(x) para d = 3 e k = 4

Fonte: o autor.
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A função de verossimilhança é estimada a partir da razão entre o total de observações

de um setor específico capturadas pela esfera, definido por ki e o produto entre n e V , o que

resulta na equação 3.25.

P(s | S)∼=
ki

nV
(3.25)

Assim, a probabilidade do setor ser selecionado para estimar posicionamento do alvo

é dado pela razão entre entre ki e k, conforme a equação 3.26.

P(S|s) = P(s|S)P(S)
P(s)

=
ki
nV

n
N

ki
nV

=
ki

k
(3.26)

Esse procedimento de estimativa da probabilidade a posteriori através do algoritmo

kNN é discutido em detalhes em Fukunaga (1990), Duda e Hart (1973), Gramacki (2017) e

Theodoridis e Koutroumbas (2008). A implementação do IPS em questão é resumido através do

algoritmo 6 e da figura 28 (O procedimento de posicionamento 3D é o mesmo, com a diferença

que uma esfera deve ser implementada).

Algoritmo 6: Algoritmo kNN-Bayes para posicionamento indoor 3D
Input: rp= {rp1,rp2, · · · ,rpN} ∈ Rn que representa o vetor de

pontos de referência.

Um vetor de sinal s = {o1,o2, · · · ,oN}.

Output: Posicionamento 3D a partir do centroide das coordenadas dos

RP’s do setor que apresenta o maior número de observações

capturadas pela esfera.

1: obtenha k =
√
N

2: Implemente uma esfera de volume V que capture os k vizinhos

mais próximos de s.

3: for i=1 to N do

4: Selecione o setor com o maior quantidade de observações

capturadas pela esfera.

5: end for

6: Obtenha o centroide dos RPs do setor selecionado.

7: Retorne a posicionamento 3D baseado nas coordenadas obtidas

no passo 6.
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Figura 28 – Exemplo de aplicação do algoritmo kNN-Bayes em um ambiente com cinco setores
para o caso 2D

Fonte: o autor - exemplo implementado através do sotfware Sweet Home 3D (ETEKS, 2006).

Note que na figura 28, têm-se quatro possíveis setores para se estimar a localização

do alvo (setores 1,2,4 e 5. O setor 3 neste caso não foi selecionado, pois seus pontos não foram

capturados pela esfera). Dentre esses setores, o 5 apresenta maior frequência de observações

similares a s (-48dBm) que os demais. Assim esse setor é selecionado e o posicionamento 3D do

alvo é obtido através do centroide das observações.
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3.4 Conclusão

Nessa seção, foram propostos dois algoritmos baseados em estatística Bayesiana

para ao problema de posicionamento indoor 3D. A primeira solução prosposta consiste em

combinar os algoritmos k-means e naive Bayes, uma versão simplificada do teorema de Bayes,

em que que os atributos do vetor s são independentes um dos outros dado os setores. A segunda

solução, estima a probabilidade a priori da equação em definida em 2.45 através do algoritmo

kNN. No próximo capítulo apresentaremos uma solução para o problema de posicionamento

baseado em sistemas multiagente, utilizando uma rede neural profunda e uma rede Bayesiana

que está fundamentada nos conceitos relacionados ao algoritmo naive Bayes.
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4 MÉTODO PROPOSTO III - IPS-MAS

4.1 Introdução

Aqui, a solução proposta chamada de sistema de posicionamento baseado em sis-

temas multiagente (IPS-MAS), foi desenvolvida a partir de duas hibridizações. Primeiro o

método ML foi combinado com o método de impressão digital com o objetivo de reduzir a

região de aquisição dos vetores de sinais. Depois, uma hibridização entre uma rede Bayesiana

/ Bayesian network (BN) e uma rede neural profunda (DNN), foi implementada, de modo que

esses algoritmos possam funcionar de forma integrada com o objetivo de maximizar a precisão

do sistema de posicionamento.

Definição 4.1.1.

Uma BN, denotada por B = 〈G,θ〉, é um grafo direcionado acíclico / directed

acyclic graph (DAG), com G = (V,A) definido por um par composto de vértices (V ) que repre-

sentam um conjunto de variáveis aleatórias, {V1,V2, · · · ,VN} e arestas ou arcos (A) represen-

tando a dependência entre essas variáveis aleatórias. θ representa o conjunto de probabilidades

condicionais relacionadas a cada variável aleatória. Se existe um arco no sentido de V1 para

V2, diremos que V1 é pai de V 2. Assim a probabilidade conjunta P(V1,V2, · · · ,VN), é dada pela

equação 4.1.

∏
i

P(Vi | V1,V2, · · · ,Vi−1) = ∏
i

P(Vi | pais(Vi)) (4.1)

Na figura 29, a probabilidade conjunta P(A,B,C,D,E,F), considerando:

V = {A,B,V,D,E,F} e A = {(A,B),(A,C),(A,D),(B,E),(C,E),(D,E),(E,F)}, é

expessa como P(A)P(B | A)P(C | A)P(D | A)P(E | B,C,D)P(F | E).
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Figura 29 – Exemplo de uma rede Bayesiana com variáveis aleatórias V = {A,B,V,D,E,F}

Fonte: o autor.

O algoritmo 7 Pearl (1988) resume o procedimento de construção de uma rede

bayesiana.
Algoritmo 7: Algoritmo de construção de rede da Pearl.

1: Defina um conjunto de variáveis aleatórias Vi relevantes que

descrevem o domínio.

2: Defina uma ordem para as variáveis Vi

3: while houver variáveis restantes do

4: Adicione a próxima variável Vi à rede.

5: Relacione os vértices Vi, de forma a satisfazer a equação

definida em 4.1.

6: Defina uma tabela de probabilidade condicional (CPT)

para Vi.

7: end while

Definição 4.1.2.

Uma DNN pode ser entendida intuitivamente como uma rede MLP convencional

com várias camadas ocultas (frequentemente mais do que duas). Este modelo de ANN utilizado
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por Yu et al. (2012) para modelagem de problemas relacionados ao reconhecimento de voz.

Outros trabalhos que discutem sobre esse tipo de rede, incluem: Yu e Deng (2014), Ali e Senan

(2018) e Bengio (2009). A figura 30 ilustra a arquitetura de uma típica DNN com três camadas

escondidas enquanto que o algoritmo 8 resume o processo de aprendizado dessa rede através do

algoritmo backpropagation Rumelhart et al. (1986).

Figura 30 – Arquitetura de uma DNN

Fonte: o autor.

Algoritmo 8: Backpropagation.
1: for d in data do

2: Forwards Pass

3: Apresente um padrão à camada de entrada da rede que será propagado

ao longo das conexões entre entre os neurônios das várias camadas até

ser gerado um padrão nas unidades de saída.

4: Backwards Pass

5: for layer in layers do

6: Compare o padrão de saída com o padrão desejado. A diferença ou

erro é propagada para trás através da rede, modificando-se os pesos.

7: end for

8: end for

9: Retorne estimativa.

4.2 IPS-MAS

Para implementação desse IPS, inicialmente aplicou-se o método ML de forma

a estimar T (x,y,z) como a coordenada representando a posição do alvo. Esta estimativa é

formalmente obtida pela interseção de quatro esferas centradas em pelo menos quatro APs com
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coordenadas dadas por (x1,y1,z1),(x2,y2,z2), · · · ,(xN ,yN ,zN), cujas distâncias para o alvo são

dadas por r2
i , para i = 1,2, · · · ,N e obtidas conforme o equação 2.8. Quando esse processo é

concluído, a região de aplicação do método de impressão digital é reduzida a uma esfera com

raio r = max(ri), for i = 1,2, · · · ,N, e os vetores s em N RPs com posições são obtidos conforme

a matriz definida em 3.1. Na fase online do IPS, sinais são apresentados a uma BN e uma DNN

(aqui tratadas como agentes inteligentes) que de forma integrada estimam o posicionamento do

alvo.

Um agente inteligente quando relacionado ao problema abordado nessa tese, pode ser

definido como um algoritmo que situado em um ambiente indoor dinâmico (AID), aqui definido

como um conjunto de estados discretos E = {e0,e1, · · · ,eN}, é capaz tomar ações autônomas

A= {a0,a1, · · · , aN} de forma a maximizar a precisão do posicionamento do alvo.

Observação. O termo AID, refere-se ao conjunto de estados que o ambiente pode apresentar

em um dado momento. Para cada um dos estados o agente retorna uma ação. Assim a resposta r

de um agente pode ser visto como uma sequência dada por (WOOLDRIDGE, 2009):

r : e0
a0→ e1

a1→ e2, · · · ,
aN−1
→ eN (4.2)

Definição 4.2.1. Seja R o conjunto de todas as sequências finitas possíveis definidas na equação

4.2, em que RA representa o subconjunto dessa sequência que termina com uma ação e RE

o subconjunto dessa sequência que termina com um estado. Para representar o efeito que as

ações de um agente têm em um ambiente, considere uma função de transformação, conforme

Wooldridge (2009), dada pela equação:

T = RA→ Po(E) (4.3)

que mapeia uma ação do agente a um conjunto de possíveis estados. Neste sentido,

de uma forma mais geral, um ambiente pode ser definido como uma 3-tupla dado pela equação

4.4 e um agente como uma função dado pela equação 4.5 (RUSSELL; SUBRAMANIAN, 1995):

E = 〈E,e0,T〉 (4.4)

AG= RE→A (4.5)

Fundamentado nas definições acima, a ideia geral deste método proposto é a im-

plementação de um sistema composto de múltiplos agentes em um ambiente E denotado pelo

par ((AG1,AG2, · · · ,AGN),E). Esses agentes trabalham de forma integrada e colaborativa com
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o objetivo de obter maior precisão para estimativa de posicionamento. A figura 31 ilustra a

arquitetura básica desse IPS.

Figura 31 – Arquitetura básica de um sistema multiagente IPS

Fonte: o autor.

4.3 Agente BN

A implementação do agente proposto a partir do conceito de rede bayesiana, consiste

em uma variação da equação definida em 3.9 chamada de árvore aumentada naive Bayes /

tree augmented naive bayes (TAN), proposta em Friedman et al. (1997). Essa variação foi

utilizada de forma a considerar a dependência do RSS com relação ao nível de ruído / noise level

(NL) no ambiente, estimado a partir da verificação do quanto o sinal é atenuado em função da

movimentação de pessoas no prédio, além da atenuação quando se incrementa o número de APs.

TAN é uma rede Bayesiana em que ∏P = /0 e cada atributo possui como pai P e

no máximo mais algum outro atributo. Perceba que este algoritmo é similar ao NB, permitindo,

no entanto, dependências entre os atributos. A figura 32 ilustra essa estrutura para o problema

em questão.

Figura 32 – TAN aplicada ao problema IPS

Fonte: o autor.
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O processo de aprendizado deste agente consiste no conjunto de dados D , que em

um dado momento, está melhor relacionado aos atributos da rede. Onde D é composto das

informações armazenadas no radio-map, assim como a relação entre s, o NL e as informações

recebidas por um agente responsável pela comunicação e mediação entre os agentes, chamado

de moderador. O algoritmo 9, resume este procedimento.

Algoritmo 9: Processo de aprendizado em uma rede TAN (FRIEDMAN et

al., 1997)
1: Forneça um conjunto de treinamento D (i.i.d).

2: Aplique a versão modificada do algoritmo definido por Chow e Liu (1968).

3: Adicione P como pai de {NL,o1,o2, · · · ,oN}

4: Obtenha uma árvore geradora mínima / minimum spanning tree (MST).

5: Transforme a árvore não direcionada resultante em uma direcionada,

escolhendo uma variável raiz e definindo a direção de todas as arestas.

O passo 2 do algoritmo 9 consiste em calcular IP̂D(Ai;A j|P) entre cada par de atri-

butos, i 6= j, em que IP̂D(Ai;A j|P) é a informação mútua condicional com relação à distribuição

empírica P̂D em D entre Ai,A j dado P . A versão modificada do algoritmo proposto por Chow

e Liu (1968) é apresentado na equação 4.6.

I(Ai;A j|C) = ∑
ai;a j;c

P̂D(ai;a j;c)log
P̂D(ai;a j|c)

P̂D(ai|c)P̂D(a j|c)
(4.6)

O passo 3 do algoritmo 9, pode ser obtido a partir de dois algoritmos clássicos em

teoria dos grafos. O algoritmo de Prim desenvolvido por Jarník (1930) e mais tarde republicado

por Prim (1957) e o algoritmo de Kruskal (KRUSKAL, 1956). Uma MST é formalmente definida

como:

Definição 4.3.1. Dado um grafo não direcionado G = (V,A), em que cada aresta (u,v) possui

um peso p(u,v). Encontre um conjunto T ⊆ conectando todos os vértices V com pesos mínimos.

Em que p(T ) = ∑(u,v)∈T p(u,v). Um conjunto acíclico conectando todos os vértices em que o

somatório dos pesos representa o mínimo entre todas possibilidades, é chamado de MST. O

algoritmo 10 resume o procedimento para obtenção de uma MST genérica.
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Algoritmo 10: Obtenção de uma AGM genérica (PANDEY, 2008)
1: C←{}

2: while um conjunto C não formar uma AGM do

3: encontrar uma aresta segura para A.

4: end while

5: C←C∪{(u,v)}.

6: Retorne C

• Algoritmo de Prim: Este algoritmo inicia selecionando aleatoriamente um vértice v em

um grafo G = (V, A). Em seguida, seleciona-se outro vértice u que se conecta a v tal que

a aresta (u,v) possua o menor peso entre todas arestas incidentes em v. A cada iteração

escolhe-se um vértice que satisfaça esta condição. Este processo é repetido até que se gere

uma AGM. O algoritmo 11 resume esse procedimento.

Algoritmo 11: Algoritmo de Prim
1: Q←V [G]

2: for cada u em Q do

3: chave[u]← ∞

4: chave[r]← o

5: π[r]← NIL

6: end for

7: while A fila Q não estiver vazia do

8: u← DeleteMin(Q)

9: end while

10: for cada v adj em [u] do

11: if v em Q e ω(u,v)< chave([u]) then

12: π[r]← ω(u,v)

13: chave([v])← ω(u,v)

14: end if

15: end for

• Algoritmo de Kruskal: Implementa uma floresta em que cada vértice é considerado uma

árvore separada. Duas árvores se conectam se e somente se a aresta que as conecta possuir
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o menor peso entre todas as opções disponíveis e não formar um ciclo.

Algoritmo 12: Algoritmo de Kruskal
1: C←{}

2: for cada vértice v ∈V [G] do

3: Ordene as aresta de A em ordem crescente por peso.

4: Make-Set (v): Cria um novo conjunto {v}

5: end for

6: for cada a = (u,v) ∈ A do

7: if Find-Set (u) 6= Find-Set (v): Retorna um ponteiro para o representante

do (único) conjunto que contém x. then

8: C←C∪{(u,v)}

9: UNION (u,v)

10: end if

11: end for

12: The system returns the 3D positioning based on the centroid of the estimates.

4.4 Agente DNN

Formalmente, o agente implementado a partir desse conceito é defindo como:

Definição 4.4.1. Seja uma DNN com a camada de entrada denotada por camada C0 e a camada

de saída como C para uma DNN com uma C+ 1 camadas, então a C-ésima camada pode ser

representada pela equação 4.7.

vc = f (ac),0 < c< C (4.7)

em que
{

ac =
(
Wcv`−1 +bc

)
,vc,bc

}
∈ RNc×1, Wc ∈ RNc×Nc×1 e Nc ∈ R, represen-

tando respectivamente, o vetor de excitação, o vetor de ativação, a matriz de peso, um neurônio

especial chamado de bias e o número de neurônios na camada c. Considere ainda v0 = o∈RN0×1

uma observação do vetor, N0 =D é a dimensão dessa observação e f (•) é uma função de ativação

(geralmente uma sigmóide ou a tangente hiperbólica dadas pelas equações 4.8 e 4.9 respecti-

vamente (YU; DENG, 2014)) aplicada a v, então define-se um o erro quadrático médio com o

objetivo de otimizar os pesos e bias de forma a minimizar o erro dado pela equação 4.10.
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f (a) =
1

1+ e−a (4.8)

f (a) =
ea− e−a

ea + e−a (4.9)

EQM =
1
2 ∑(C−o(v0,W))2 (4.10)

em que o(v0,W) representa a saída real.

De forma ajustar cada peso na rede proporcionalmente a contribuição com relação ao

erro geral, aplica-se o algoritmo backpropagation de forma calcular o gradiente (4) da equação

definida em 4.10, aplicando sistematicamente a regra da cadeia a partir do cálculo de múltiplas

variáveis. A ideia é que em cada iteração seja dado pequenos passos na direção que minimiza o

erro. Assim os pesos e bias a cada iteração podem ser ajustados conforme as equações 4.11 e

4.12 (ALI; SENAN, 2018).

4wC
i, j =−η

∂E
∂wC

i, j
(4.11)

4bCi =−η
∂E
∂bCi

(4.12)

em que η é o parâmetro de taxa de aprendizado. Este parâmetro está relacionado

com o tempo de convergência do algoritmo. Se η for muito pequeno, a descida de gradiente

também irá progredir lentamente. Se for muito grande, a descida em gradiente ultrapassará os

mínimos e possivelmente não convirja. Não há um método sistemático para obtenção do η . No

capítulo 5 discutimos sobre alguns valores abordados na literatura.

4.5 Comunicação e interação

A implementação da comunicação em um sistema multiagente é crucial para garantir

seu bom desempenho. Um agente especial chamado de moderador é responsável pela a comu-

nicação e tomada de decisão entre os agentes da BN e da DNN, evitando a implementação de

um módulo de mediação em cada um deles. Existem várias abordagens para a implementação

dessa comunicação. Uma bastante conhecida é a linguagem de consulta e manipulação de

conhecimento / knowledge query and manipulation language (KQML). Essa linguagem foi

desenvolvida no início de 1990 sendo parte do projeto American Knowledge Sharing Efforts

(CASTAÑO, 2018). KQML define um formato comum para mensagens, que no contexto de
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programação orientada a objetos (POO), pode ser entendida como um objeto (WOOLDRIDGE,

2009). Cada mensagem possui uma estrutura (que pode ser pensada como a classe da mensagem)

e um conjunto de parâmetros de performativos representando variáveis de instância. O algoritmo

13, apresenta a estrutura básica de uma mensagem em KQML.

Algoritmo 13: Estrutura básica de uma mensagem KQML. (PAN-

DEY, 2008)
1: (KQML - performative

2: :Sender <Agent 1>

3: :Receiver <Agent 2>

4: :language <C>

5: :Ontology <Estimativa de posicionamento>

6: :content <(2.5,0.75,12)>

7: ...

8: )

Observação. Uma ontologia representa uma descrição explícita de um domínio (conceitos,

propriedades, restrições e assim por diante) (CASTAÑO, 2018).

Outras abordagens aplicadas à comunicação entre agentes são discutidas em Jones

(2008), Leondes (2002), Hadzic et al. (2009), Castaño (2018) e Wooldridge (2009).

A figura 33, estende o conceito de MAS ilustrado na figura 31.

Figura 33 – Arquitetura de sistema multiagente IPS com agente moderador

Fonte: o autor.
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A interação dos agentes BN e DNN, foi implementada a partir de um algoritmo

chamado de algoritmo de estimativa de ação / action estimation algorithm (ACE) proposto por

Weib (1993), que consiste em variação do algoritmo de atribuição de crédito bucket brigade

proposto por Holland (1985). No algoritmo ACE, inicialmente cada agente AGi, para i =

1,2, · · · ,N, ao oberservar ei, para i = 1,2, · · · ,N, determina um conjunto de possíveis ações

(possíveis retornos de posicionamento) que podem ser executadas, denotada por a j
i , em que

a j
i ⊆A. Para cada a j

i , os agentes executam um lance (bid) conforme a equação 4.13.

B j
i (E) =

(α +β )R j
i : R j

i ≥ θe

0 : Caso contrário
(4.13)

em que R j
i é um parâmetro de relevância associado à cada a j

i , α representa uma

constante chamada de fator de risco para uma ação executada pelos agentes. Representa uma

fração de R j
i que os agentes estão dispostos arriscar para executarem suas ações. β é chamado de

termo de ruído escolhido, cuja o objetivo é evitar que o aprendizado de um agente convirja para

um mínimo local. No próximo capítulo é discutido uma regra para obtenção desse termo. θe é

uma constante chamada de estimate minimum. Finalizado esse processo, os valores de B j
i (E)

são compartilhados com os demais agentes e as ações a j
i são armazenadas em um conjunto

denotado por CP(E), em que CP(E) =
⋃N

i=1A. Em seguida os agentes selecionam as ações que

resultaram em maiores valores para equação 4.13 e armazenam tais ações em um novo conjunto

chamado de contexto de atividades, denotado por C(E), que representa o conjunto das ações que

serão executadas. Este procedimento é formalmente descrito nos seguintes passos (DOWELL;

STEPHENS, 1994):

• CP(E) =
⋃N

i=1A e C(E) = /0;

• Até que CP(E) = /0 faça

– selecione a j
i ∈CP(E), em que B j

i (E)≥ Bl
k(E)∀a

l
k ∈CP(E);

– C(E) = C(E)∪a j
i ;

– CP(E) = CP(E)−
({

a j
i

}
∪
{

al
k ∈CP(E) : al

k;al
ksão incompatíveis

})
A etapa final desse algoritmo permite que cada agente possa aprender ajustando

suas estimativas R j
i para cada ação selecionada a j

i em C(E). Formalmente, este procedimento é

definido conforme a equação 4.14.

R j
i = R j

i −B j
i (E)+

Re

|C(E)|
+

∑ai∈C B j
i (E)

|C(E)|
(4.14)
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em que Re representa uma recompensa fornecida por um agente moderador. Essa

recompensa será fornecida em função do quão distante os pontos de posicionamento estão

do centroide dessas estimativas. Isso significa que quanto mais homogêneo C(E), maior a

recompensa. O objetivo é que os agentes possam iterativamente reduzir os outliers. O critério de

Re relacionado a dispersão, é discutido no próximo capítulo. A figura 34 resume a arquitetura

geral do algoritmo ACE.

Figura 34 – Arquitetura IPS-MAS baseado no algoritmo ACE

Fonte: o autor.

Após N iterações, as estimativas de C(E) para os agentes BN e DNN, são armazena-

das uma matriz de estimativa denotada por Ê := (oi, j), para 16 i6N e 16 j 6M, então o agente

moderador verificará a ocorrência de outliers e os eliminará caso necessário. Às estimativas

restantes, é aplicado o algoritmo k-means de forma particionar a matriz Ê. Finalizado esse

processo, o agente moderador seleciona P que possui o maior número de pontos estimados e
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define o posicionamento 3D final do alvo a partir da coordenada do centroide dessa partição. O

IPS proposto é resumido na figura 35 e no algoritmo 14.

Figura 35 – Arquitetura geral - IPS-MAS

Fonte: o autor.
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Algoritmo 14: IPS-MAS para posicionamento 3D baseado na tecnologia

IEEE 802.11 indoor
Input: Um vetor de sinal s = {o1,o2, · · · ,oN}.

Output: Posicionamento 3D baseado no centroide das estimativas.

1: for i=1 to N do

2: Recebe as coordenadas (x,y,z) dos APs.

3: for i=1 to N do

4: Recebe um vetor de sinal s = {o1,o2, · · · ,oN}.

5: end for

Estima a distância ao alvo r2
i com i = 1,2, · · · ,N ≥ 4 usando algum

modelo de propagação.

6: end for

7: Centrado em cada um dos APs, implemente uma esfera com raio r.

8: Estimar uma posicionamento 3D a partir da interseção das esferas.

9: Implemente uma esfera de raio r em torno do ponto 3D estimado, em que

r = max (ri, para i = 1,2, · · · ,N).

10: for i=1 to N do

11: Leia s em N RPs a partir da região definida no passo 9, conforme discutido

no capítulo 3, equação 3.1.

12: end for

13: Implemente três funções que representam os agentes moderador, BN e DNN,

em que cada um desses agentes possui uma base de conhecimento, um motor

de inferência e um elemento de aprendizado.

14: Aplique o algoritmo ACE, conforme discutido em Weib (1993).

15: while i 6 maxIter do

16: BN e DNN recebem um conjunto de parâmetros chamado vetor ou matriz

de percepção e retorna Ê1 e Ê2.

17: end while

18: O agente moderador aplica o algoritmo k-means de forma a particionar Ê1 e

Ê2, e alocar o alvo na partição P que possui maior quantidade de pontos

estimados.

19: Retorne o posicionamento 3D com base no centroide de P
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4.6 Conclusão

Neste capítulo, foi proposto um IPS baseado no desenvolvimento de um MAS

que foi implementado a partir de uma combinação dos métodos ML e impressão digital. O

sistema proposto considera a relação entre o RSS e o NL, que é influenciado pelo aumento do

número de APs e do número de pessoas que se deslocam pelo ambiente. No próximo capítulo,

apresentaremos os resultados experimentais, comparando os três algoritmos propostos com os

métodos mais abordados na literatura.
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5 RESULTADOS EXPERIMENTAIS

Este capítulo tem como objetivo resumir os resultados relacionados aos desempenhos

dos algoritmos propostos em um cenário real. Esses algoritmos foram comparados com outras

sete abordagens amplamente utilizado na literatura (LIU et al., 2007). De forma a realizar

tais comparações, várias métricas foram utilizadas, tais como: média, coeficiente de variação,

medidas separatrizes e função de distribuição acumulada. Além disso, esses experimentos foram

aplicados a fim de mensurar a influência da combinação entre os métodos ML e impressão digital

na precisão dos algoritmos.

Os experimentos foram conduzidos no primeiro, segundo e terceiro pisos do bloco

acadêmico 707, localizado no Centro de Tecnologia da Universidade Federal do Ceará, em

Fortaleza, com área total de 3791,05m2. Os seguintes setores foram selecionados:

• Térreo: toda região (espaço de convivência);

• Primeiro andar: Hall, corredor, sala de aula 11 e 12;

• Segundo andar: Hall e corredor.

As figuras 37 e 38, ilustram respectivamente o bloco e planta baixa referentes ao

primeiro andar. Os vetores s foram obtidos em 180 RPs distribuídos nos três andares utilizados.

Para cada RP, 25 amostras RSS foram coletadas em quatro direções e em três alturas diferentes

com relação a quatro APs selecionados, resultando em 300 valores RSS para cada RP. A tabela 7

apresenta alguns valores adotados na literatura.

Tabela 7 – Alguns valores de RPs e amostras s utilizados na literatura

Referência Algoritmo Precisão Reportada Parâmetros

Cosine similarity

(HAN et al., 2015)
WkNN

61,2% das estimativas

dentro de 2,0m.

213 RPs

(100 amostras - RP)

RADAR

(BAHL; PADMANABHAN, 2000)
kNN

50% das estimativas

dentro de 2,75m

70 RPs

(>20 amostras- RP)

GS

(KHALAJMEHRABADI et al., 2017)

GS sparse

recovery

50% das estimativas

dentro de 1.24 m

192 RPs

(>100 amostras - RP)

FS-kNN

(LI et al., 2016)
kNN

80% das estimativas

dentro de 2,5m

133 RPs

(>50 amostras - RP)

MDKDE

(HUANG; MANH, 2016)

Multidimensional

kernel

90% das estimativas

dentro de 1,5m

370 RPs

(>30 amostras - RP)

Fonte: o autor.
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Para aquisição de s foi desenvolvido um so f tware em C++ para o sistema operacio-

nal Windows, utilizando a interface de programação de aplicação / application programming

inter f ace (API) Native WiFi da Microsoft. O so f tware realiza leituras passivas em modo mo-

nitor à procura dos APs com identificador do conjunto de serviço / service set identi f ication

(SSID) registrados, e então aquisições RSS são feitas para cada AP e os valores coletados são

salvos em um arquivo de texto e lidos pela linguagem R, na qual foram implementados todos os

algoritmos. A tabela 8, apresenta algumas bibliotecas utilizadas nos experimentos e simulações,

enquanto que a figura 36, apresenta a arquitetura básica de posicionamento.

Tabela 8 – Alguns Packages utilizados nas implementações em R.
package Versão
neuralnet 1.33
triangulation 0.5.0
knnDE 1.6.2
kde 1.10.7
Stats 3.6.0
mxnet 1.3.0
bnclassify 0.4.0
bnlearn 4.4-20180620

Fonte: o autor.

Figura 36 – Arquiterura básica - IPS baseado em Wi-Fi

Fonte: o autor.
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Figura 37 – Bloco acadêmico 707 - Centro de tecnologia da Universidade federal do Ceará

Figura 38 – Planta do primeiro andar do bloco 707 utilizado nos experimentos

Fonte: Superintendencia de Infraestrutura e Meio Ambiente da UFC.



93

As máquinas utilizadas nos experimentos possuem a seguinte configuração: Dell,

Intel Core i5, 1.8 GHZ, 6 GB RAM, Adapter Dell Wireless 1703 802.11b/g/n (para aquisição de

dados) e AMD FX-8120 desktop 8GB RAM (implementação dos algoritmos). Após a etapa de

aquisição do sinal, foi realizado um experimento com o objetivo de verificar a variação do sinal

no ambiente. Em um ponto fixo (15,2; 0,7 e 7.72 m), durante 300 s foi verificada a intensidade

do sinal com relação aos quatro APs utilizados nos experimentos. Os resultados são ilustrados

na figura 39. Note que mesmo em uma posição fixa, as flutuações do sinal atingem 10 dB, o que

representa uma variabilidade esperada para um ambiente indoor.

Figura 39 – Variações da intensidade do sinal em ponto fixo para os quatro APs

Fonte: o autor.

Com relação aos parâmetros dos algoritmos, para o algoritmo kmeans−NB, testou-

se diferentes valores de P. O melhor resultado foi obtido quando P = 50. Para estimativa

do termo P(s|P), aplicou-se o método kernel. Com relação ao algoritmo kNN-Bayes, como

discutido na seção 3.3, o valor de k é obtido a partir da
√
N, o que resulta em≈ 232. O algoritmo

IPS-MAS foi implementado com uma ANN com quatro camadas ocultas. Números diferentes

de neurônios foram testados para as camadas ocultas. O melhor resultado observado foi de 350

neurônios. Para essa rede neural, o algoritmo de backpropagation foi utilizado como método de

aprendizagem. Existem diferentes regras na literatura para escolher a taxa de aprendizagem η

para implementação desse algoritmo. Schulz et al. (2013) sugere 0,001≤ η ≤ 0,1, enquanto
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Kriesel (2007) sugere 0≤ η ≤ 1. Nesse sentido, foram testados diferentes valores de η através

do coeficiente de correlação (CC) entre a posição real do alvo e a posição estimada, conforme

sugerido por Schulz et al. (2013). A tabela 9 apresenta os resultados obtidos:

Tabela 9 – Relação entre diferentes valores para os parâmetros de η e o CC
DNN η CC
DNN 1 0,01 0,82
DNN 2 0,02 0,817
DNN 3 0,03 0,813
DNN 4 0,04 0,834
DNN 5 0,05 0,794
DNN 6 0,1 0,72
DNN 7 0,2 0,734
DNN 8 0,3 0,709
DNN 9 0,4 0,705
DNN 9 0,5 0,698

Fonte: o autor.

Como discutido no capítulo 4, valores muito altos de η podem implicar em não

convergência do algoritmo. Esse fenômeno pode ser observado tabela 10, em que maiores

valores de η tentem a resultar em CC menor. Uma exceção porém, são η = 0,04 e η = 0,2.

Nesse sentido, escolhemos η = 0,04 que resulta em maior CC. Para a BN, aplicamos um

TAN com vértices representados por s, nível de ruído e informações recebidas pelo moderador.

Além disso, usamos a suavização a priori de Dirichlet conforme discutido em Friedman et al.

(1997). O algoritmo ACE, foi implementado segundo discutido em Weib (1993), com α = 0,1,

β ∈
[
−α

5 ,
α

5

]
e θ = Re. A tabela 10 (dispersão classificada segundo Rangarajan et al. (1992)),

apresenta os valores relacionados às recompensas fornecidas aos agentes em função do Cv.

Tabela 10 – Valores referentes a recompensas em função do Cv

Cv Dispersão Recompensa
Cv ≤ 10% Baixa +10
10% <Cv ≤ 20% Média +5
20% <Cv ≤ 30% Alta -5
Cv > 30% Muito Alta -10

Como algoritmos para comparação, as principais soluções abordadas na literatura

foram escolhidas. Em Bahl e Padmanabhan (2000), foi provado que o melhor desempenho para

o algoritmo kNN é alcançado para k ∈ (2,4). assim, utilizamos valores de k = 2 e 3 com a

distância euclidiana. O teorema de Bayes definido na equação 2.45, foi aplicado utilizando os
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métodos kernel e histograma como abordagens para estimativa da verossimilhança conforme

discutido na seção 3.2 e sugerido por Roos et al. (2002). As redes neurais MLP e função de base

Radial / radial basis f unction (RBF), também foram aplicadas ao problema de forma individual.

Para a MLP, o melhor resultado foi alcançado a partir de 290 e 170 neurônios para a primeira e

segunda camadas ocultas, respectivamente. Para RBF, esse valor foi de 400 neurônios.

Com relação ao desempenho dos algoritmos, o algoritmo IPS-MAS, apresentou

melhores resultados que os demais. Este algoritmo teve como retorno um erro médio (εm)

inferior a 0,9 m com uma precisão (Pr) de 97,7% e 100% das estimativas dentro de 1,5 m e

2,0 m, respectivamente. Este resultado representa uma diferença no valor de εm de mais de

22 cm em relação ao algoritmo mais similar, e mais de 1,55 m em relação ao método ML. O

melhor resultado desse algoritmo está relacionado a dois fatores importantes, a implementação de

agentes inteligentes funcionado de forma integrada e colaborativa e da combinação dos métodos

ML e impressão digital. Este último fator foi observado por Liu et al. (2007), que discute sobre

a precisão em função da hibridização de algoritmos.

Uma comparação entre todos os algoritmos baseados em impressão digital, incluindo

o erro absoluto εa, εm, Cv, o primeiro, segundo e terceiro quartis (Q1, Q2 e Q3) e Pr é apresentada

na figura 40 e nas tabelas 11 e 12.

Figura 40 – CDF do erro de posicionamento com 4 APs
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Tabela 11 – Intervalos de classe para as estimativas de posicionamento

Algoritmo
Pr (%)
6 1,5m

Pr (%)
6 3,5m

Pr (%)
6 5,5m

Pr (%)
6 7,5m

ML 68,2 80,1 87,8 95,1
kNN
k = 2 75,8 88 94,8 98,9

kNN
k = 3 76,1 88,7 95,3 99,1

ANN
MLP 76,2 89 95,8 99,3

ANN
RBF 76,65 89,6 96,5 99,4

Histograma 76,9 90,8 98 100
Kernel 77,2 91,2 98,6 100

kNN-Bayes 74,4 92 98,7 100
kmeans-NB 77,9 93,1 98,9 100
IPS-MAS 97,7 100 100 100

Tabela 12 – Estatísticas das estimativas de posicionamento (Média, coeficiente de variação, Q1,
Q2, e Q3 em metros)

Algoritmo εm Cv Q1 Q2 Q3
ML 2,235 59,70% 1,36 1,73 2,57

kNN = 2 1,919 45,22% 1,33 1,66 1,93
kNN = 3 1,916 44,16% 1,33 1,66 1,91

ANN (MLP) 1,905 43,15% 1,33 1,66 1,90
ANN (RBF) 1,883 41,89% 1,33 1,65 1,88
Histograma 1,843 37,97% 1,32 1,65 1,86

Kernel 1,832 36,80% 1,32 1,65 1,84
kNN-Bayes 1,819 36,19% 1,32 1,64 1,83
kmeans-NB 1,803 35,06% 1,32 1,64 1,81
IPS-MAS 0,90 38,70% 0,64 0,84 1,19

O algoritmo kmeans−NB, resultou em Pr de 77,9%, 93,1%, 98,9% para os in-

tervalos 1,5; 3,5; 4,5 m e εm igual a 1,80 m. Esses resultados foram superiores ao algoritmo

kNN-Bayes, que apresentou precisões de 77,4%, 92%, 98,7% para os mesmos intervalos e εm

igual a 1,82 m.

Os sistemas implementados a partir do kNN e ANN obtiveram desempenhos próxi-

mos, com uma diferença do εm de ≈ 0,04 m entre o algoritmo com melhor desempenho (ANN

com RBF) e pior desempenho (kNN com k = 2).

Os algoritmos probabilísticos (histograma e kernel, implementados diretamente

através da equação 2.45) apresentaram εm = 1,84 e 1,832 m, respectivamente. As figuras 41
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e 42, ilustram, respectivamente, uma comparação entre os algoritmos IPS-MAS e kmeans-NB

em relação à distribuição de probabilidade do erro para 16 estimativas em comparação ao

posicionamento real.

Figura 41 – Histograma da distribuição de probabilidade do erro para 16 estimativas para os
algoritmos IPS-MAS e kmeans-BN.

Figura 42 – Comparação dos algoritmos IPS-MAS e kmeans-NB para 16 estimativas
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O algoritmo IPS-MAS também foi testado com o usuário em movimento (posicio-

namento por trajetória). O experimento foi repetido 10 vezes nos períodos da manhã, tarde e

noite. Os resultados indicam que houve um pequeno decremento na precisão desse algoritmo

em função do deslocamento do usuário. Os resultados desse experimento estão apresentados na

tabela 13 e na figura 43.

Tabela 13 – Estatísticas das estimativas de posicionamento para o usuário em movimento (Média,
coeficiente de variação, Q1, Q2 e Q3 quartis em metros

Distância 0,64 ≈ 30m
Repetições 30
Total de observações RSS coletados 157
Velocidade 0,65m/s
Coordenadas de Origem (0; 1,0; 3,20 m)
Coordenadas de destino (10; 1,0; 6,40 m)
εm 0,93
Cv 40,34%
Q1 0,64
Q2 0,88
Q3 1,23

Figura 43 – (a) Trajeto real, (b) trajeto estimado com IPS-MAS

O método ML, amplamente utilizado no contexto de posicionamento outdoor, apre-

sentou piores resultados comparado com outros algoritmos. Como discutido, isso ocorre devido

à alta variabilidade do sinal, característica de ambientes fechados. Com o objetivo de verificar se

o incremento de APs está relacionado a uma melhor precisão para este método, uma simulação

utilizando o modelo de propagação MWM definido na equação 2.27, foi implementada de
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forma a obter a precisão para 7,9,11,12,15,17,19, 21 e 23 APs. Os resultados da simulação

indicam que à medida que o número de APs aumenta, há uma melhora na precisão do sistema

considerando apenas o NL, que resulta do movimento de pessoas em torno do ambiente. A

figura 44 ilustra o incremento da precisão em função do número de APs para o intervalo 0−4m,

enquanto que a figura 45 ilustra esse mesmo comportamento para o intervalo 0−2m.

Figura 44 – CDF do erro de posicionamento para o método ML com 7,9,11,12,15,17,19,21 e
23 APs simulados a partir do modelo de propagação cost 231 MWM

Figura 45 – Precisão em função do número de APs para um erro fixado em 1,5m do posiciona-
mento real para o método ML simulado a partir do modelo de propagação cost 231
MWM
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Quando consideramos também o NL causado pelo aumento do número de APs, a

precisão de todos os algoritmos tende a piorar. Nesse cenário, o algoritmo IPS-MAS também

apresentou melhor desempenho. Isso pode ser explicado pelo fato desse algoritmo ter sido

projetado para considerar os efeitos NL sobre as estimativas. O resultado dessa simulação é

mostrado na figura 46.

Figura 46 – Relação entre precisão e NL

De forma a mensurar o efeito da combinação da ML e impressão digital sobre o IPS

(com exceção é claro do método ML), todos os algoritmos foram implementados considerando

essa combinação. Os resultados indicam que houve um melhora significativa na precisão desses

algoritmos. Para o Algoritmo kmeans-NB, por exemplo, esse incremento na precisão foi superior

a 68 cm. A tabela 14 e as figuras 47 e 48, resumem as principais estatísticas relacionadas ao

posicionamento.
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Tabela 14 – Estatísticas das estimativas de posicionamento (Média, coeficiente de variação, Q1,
Q2, e Q3 em metros) - Combinação ML e impressão digital

Algoritmo εm Cv Q1 Q2 Q3
ML 2,45 55,78% 1,42 2,36 3,36

kNN = 2 1,41 46,22% 0,92 1,42 1,86
kNN = 3 1,35 45,85% 0,89 1,34 1,79

ANN (MLP) 1,28 44,88% 0,86 1,28 1,71
ANN (RBF) 1,26 45,33% 0,83 1,26 1,68
Histograma 1,23 44,55% 0,81 1,23 1,64

kernel 1,19 45,68% 0,77 1,19 1,59
kNN-Bayes 1,15 45,27% 0,7561 1,15 1,49
kmeans-NB 1,12 44,43% 0,74 1,13 1,45

IP-MAS 0,90 38,70% 0,64 0,84 1,19

Figura 47 – CDF do erro de posicionamento considerando a combinação entre os métodos ML
e impressão digital
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Figura 48 – Comparação da distribuição de probabilidade do erro para 16 estimativas para os
algoritmos IPS-MAS e kmeans-BN considerando a combinação entre os métodos
ML e impressão digital

Nesse capítulo apresentou-se os principais resultados relacionados aos algoritmos

propostos. Adicionalmente, uma comparação entre esses algoritmos e as principais abordagens

baseadas em impressão digital foi apresentada. O experimentos foram realizados no bloco

didático 707 no centro de tecnologia da Universidade Federal do Ceará. Por se tratar de

um espaço bastante movimentado, torna-se ideal para o teste dos algoritmos propostos. Os

experimentos e simulações realizadas podem ser resumidos em da seguinte forma:

• Incialmente todos os algoritmos foram comparados (com apenas o algoritmo IPS-MAS

utilizando a combinação do método de multilateração ML e impressão digital);

• Em um segundo cenário, testou-se todos os algoritmos baseados em impressão digital,

combinando este método com ML. O objetivo é verificar o efeito dessa combinação na

precisão dos algoritmos;

• Uma simulação computacional foi implementada a fim de verificar os efeitos do incremento

de pontos de acesso (APs) e do número de pessoas se movimentando pelo ambiente com

relação à precisão dos algoritmos.

Verificou-se que uma combinação entre o método de impressão digital e o método

clássico de posicionamento ML pode incrementar significativamente a precisão de um sistema

de posicionamento indoor. Tomando o algoritmo kmeans-NB como exemplo, o erro médio εm
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foi reduzido em mais 68 cm. Um outro fator relevante consiste no incremento da precisão do

método ML, quando se aumenta o número de APs. Porém esse método se mostrou mais afetado

pelo ruído causado pelo incremento de pessoas no ambiente. Por fim, o algoritmo proposto

baseado no conceito de sistemas multiagentes, apresentou os melhores resultados em todos os

cenários. Este melhor desempenho não está somente relacionado à combinação dos métodos

ML e impressão digital. A integração entre os agentes baseados em redes neurais e Bayesianas

tiveram grande contribuição nesse sentido.
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6 CONCLUSÕES E TRABALHOS FUTUROS

Nessa pesquisa, as principais abordagens e desafios relacionados ao posicionamento

indoor foram discutidos. Além disso, três soluções baseadas em inferência Bayesiana para

posicionamento tridimensional foram propostas e comparadas com os principais algoritmos

abordados na literatura, inclusive com método de multilateração, um dos mais utilizados no

contexto outdoor.

Os experimentos foram conduzidos no primeiro, segundo e terceiro pisos do bloco

acadêmico 707, localizado no Centro de Tecnologia da Universidade Federal do Ceará, em

Fortaleza, com área total de 3791,05 m2. O primeiro algoritmo proposto, consiste na combinação

dos algoritmos k-means e naive Bayes, enquanto que o segundo tem como base o k-nearest

neighbors e o teorema de Bayes. O terceiro algoritmo foi desenvolvido a partir de um sistema

multiagente composto de uma rede Bayesiana e uma rede neural profunda. Com o objetivo

de maximizar a precisão do sistema, esse algoritmo considerou além dos vetores RSS, outras

variáveis como parâmetros de entrada, incluindo o nível de ruído provocado pelo aumento do

número de pontos de acesso e pelo número de pessoas em movimento dentro do ambiente. Outro

fator que contribuiu para o bom desempenho do sistema foi a redução da região de aplicação do

método de impressão digital, através de uma combinação com o método de multilateração.

Os algoritmos propostos apresentaram melhor desempenho quando comparados com

os demais, resultando εm =0,90 m, 1,80 m, 1,82 m para os algoritmos IPS-MAS, kmeans-NB e

kNN-Bayes, respectivamente (cenário em que a combinação entre o método de multilateração e

impressão digital foi considerada somente para o algoritmo IPS-MAS) e εm = 0,90m, 1,12 m,

1,19 m, para os algoritmos IPS-MAS, kmeans-NB e kNN-Bayes, respectivamente (cenário em

que a combinação entre o método de multilateração e impressão digital foi considerada para

os três algoritmos). Por serem baseadas em inferência Bayesiana, as soluções propostas são

bastante eficientes quando integradas com a técnica de impressão digital, pois relacionam as

informações atuais e passadas de forma eficiente, o que resulta em bons resultados em relação

à classificaão. Contudo, uma das limitações das técnicas em questão está relacionada com a

qualidade das informações, isto é, uma base de dados robusta é necessária para que um IPS

baseado nestes algoritmos apresentem bons resultados.

Como relação aos trabalhos futuros, pretende-se maximizar a precisão do sistema,

de forma a obter um εm ≤ 0.5m. Para atingir tal objetivo, certamente será necessário o desenvol-

vimento de vários métodos e algoritmos híbridos. Trabalhos futuros incluem:
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• O desenvolvimento de IPSs híbridos baseados em angulação, multilateração e impressão

digital;

• O desenvolvimento de IPS’s baseados em análise de discriminante múltipla;

• A automatização do processo de aquisição da impressão digital.
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ANEXO A – DISTRIBUIÇÕES DE PROBABILIDADE:

Figura 49 – Principais distribuições de probabilidade discretas e contínuas.

Duda e Hart (1973).
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