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“A matematica € a rainha das ciéncias.”

(Carl Friedrich Gauss)



RESUMO

Sistemas de posicionamento indoor (IPS) tém atraido muita ateng¢do nos dltimos anos, e isso é
motivado principalmente por um grande nimero de aplicacdes potenciais. No entanto, continua
sendo um desafio maximizar a precisao desse tipo de sistema, especialmente para estimativas
tridimensionais. Nesta tese, este problema € discutido de forma ampla. Além disso, trés solugcdes
baseadas em inferéncia Bayesiana sdo propostas. Entre essas solu¢des, destaca-se o sistema
intitulado IPS-MAS, que foi desenvolvido a partir de um sistema multiagente composto por
uma rede Bayesiana e uma rede neural profunda. Adicionalmente, esse sistema foi projetado de
forma a combinar os métodos de multilateracdo e impressao digital, a fim de reduzir a regido de
aquisicao dos vetores de intensidade de sinal recebido. Além disso, a relagdo entre a qualidade
do sinal recebido e o nivel de ruido, que € influenciada pelo incremento do nimero de pontos
de acesso e do ndmero de pessoas que se deslocam dentro do ambiente, € considerada pelo
sistema. Os sistemas propostos apresentaram melhor desempenho quando comparado com os
demais, resultando em erros de posicionamento médios de 0,90 m, 1,80 m, 1,82 m, para os
algoritmos IPS-MAS, kmeans-NB e kNN-Bayes, respectivamente (cendrio em que a combinacao
entre 0 método multilateracdo e impressao digital foi considerada somente para o algoritmo
IPS-MAS) € 0,90 m, 1,12 m, 1,19 m, para os algoritmos IPS-MAS, kmeans-NB e kNN-Bayes,
respectivamente (cendrio em que a combinacio entre o0 método multilateracdo e impressao digital

foi considerada para as trés solucdes).

Palavras-chave: Posicionamento indoor 3D. Inferéncia Bayesiana. Impressao digital.



ABSTRACT

Indoor positioning systems (IPS) have attracted much attention in recent years, and this is
motivated mainly by a large number of potential applications. However, it remains challenging
to maximize the precision of this type of system, especially for three-dimensional (3D) estimates.
In this research, this problem is discussed in a broad way. In addition, three solutions based on
Bayesian inference are proposed. Among these solutions, we highlight the IPS-MAS system,
which was developed from a multiagent system composed of a Bayesian network and a deep
neural network. Additionally, this proposed system was designed to combine the multilateration
and fingerprint methods in order to reduce the acquisition region of the received signal strength
vectors. Additionally, the relationship between the quality of the received signal and the noise
level, which is influenced by the increase in the number of access points and the number of people
moving within the environment, is considered by the system. The proposed systems presented
better performance when compared to the others, resulting in mean positioning errors of 0.90 m,
1.80 m, 1.82 m, for the IPS-MAS, k means-NB and k means-NB, respectively (scenario where
the combination between the multilateration and fingerprint method was considered only for
the IPS-MAS algorithm) and 0.90 m, 1.12 m, 1.19 m for the algorithms IPS-MAS, k means-NB
and kNN-Bayes, respectively (scenario where the combination between the multilateration and

fingerprint method was considered for the three solutions).

Keywords: 3D indoor positioning. indoor 3D. Bayesian Inference. Fingerprint.
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1 INTRODUCAO

A ideia de se implementar um sistema de navegagdo digital surgiu nos anos 1950,
quando os primeiros satélites foram langandos. Desde entdo, sistemas de posicionamento tém
atraido muita atencdo, e isso € motivado principalmente pelo grande nimero de aplicagcdes
potenciais. Neste contexto, um dos sistemas mais utilizados, o sistema de posicionamento global
/ global positioning system (GPS), consiste de um sistema de radio-navegacdo desenvolvido
pelo departamento de defesa dos Estados Unidos na década de 1970. O GPS é composto por uma
rede de 24 satélites em Orbita a uma altura aproximada de 20.200 Km acima do nivel do mar em
seis diferentes rotas orbitais. Os satélites estdo em constante movimento, fazendo duas Orbitas
completas ao redor da Terra em pouco menos de 24 horas. A figura 1, ilustra a configuragdo

original do GPS com satélites distribuidos em trés anéis.

Figura 1 — Configuragdo original do GPS com trés anéis de oito satélites cada

Fonte: Parkinson e Spilker (1996).

Os satélites transmitem duas ondas portadoras L1 e L2 com frequéncias derivadas a
partir de uma frequéncia fundamental (f = 10,23 MHz), o que resulta nas seguintes frequéncias

e comprimento de ondas (PARKINSON; SPILKER, 1996):



L1 =154: f=1575,42 MHz, comprimento de onda 19,0 cm;
L2 =120: f=1227,60 MHz, comprimento de onda 24,4 cm.
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Codigo C/A: O codigo C / A (course acquisition) € uma sequéncia de c6digo que se

repete a cada 1 ms. Trata-se de um cédigo pseudo-aleatdrio transmitido a 1,023 Mbps com

comprimento de onda de 293,1 m;

dias. Esse codigo € dividido em segmentos de sete dias.

Cédigo P (Precision) = 10,23 MHz, comprimento de onda de 29,31 m, periodo de 266

As principais caracteristicas destes codigos utilizados pelo GPS sdo apresentadas na

tabela 1. O GPS utiliza o conceito de tempo de chegada / time of arrival (TOA) para determinar

a posicao do usudrio. Esse conceito consiste em medir o tempo de propagagdo de sinais emitidos

por uma constelagdo de emissores em posi¢Oes conhecidas em relagdo ao receptor GPS. Este

intervalo de tempo é, entdo, multiplicado pela velocidade de propagacado do sinal, obtendo-se a

distancia emissor-receptor, estimando assim sua posi¢ao.

Tabela 1 —

Principais caracteristicas dos cédigos utilizados pelo GPS

Atomic Clock (G,Rb) fundamental frequency | 10,23 MHz

L1 Carrier Signal 154 x 10,23 MHz
L1 Frequency 1575,42 MHz

L1 Wave length 19.05 cm

L2 Carrier Signal 120 x 10,23 MH7
L2 Frequency 1227,60 MHz

L2 Wave Length 24,45 cm

P-Code Frequency (Chipping Rate)

10.23 MHz (Mbps)

P-Code Wave length

29,31 m

P-Code Period

267 dias : 7 Dias/Satétile

C/A-Code Frequency (Chipping Rate)

1.023 MHz (Mbps)

C/A-Code Wave length

293,1m

C/A-Code Cycle Length 1 ms
Data Signal Frequency 50 bps
Data Signal Cycle Length 30 s

(veja a figura 2). A primeira geragdo, compreendida entre 1985 e 1995, era composta de
fun¢des bésicas e um conjunto limitado de rotas. Na segunda geracao, de 1995 a 2000, houve

uma ampliacdo geogréfica (drea de cobertura). A terceira geragao (2000 a 2005), incluiu

Fonte: Fell (1994).

A tecnologia de navegacdo através do GPS, pode ser classificada em quatro geracoes

recursos como (KARIMI, 2011): a possibilidade de navegacdo a partir de dispositivos tais

como assistente pessoal digital / personal digital assistant (PDA), a disponibilidade de rotas
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alternativas, o aprimoramento da inclusio de feedbacks de usudrios ao sistema e a disponibilidade
para a populacdo em geral (as geragdes anteriores estavam disponiveis apenas em dispositivos
instalados em alguns automoveis de luxo). A geracdo atual € composta de recursos aprimorados

das geracOes anteriores.

Figura 2 — Linha do tempo GPS
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Generation Generation Generation Generation
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~ In-Car Gadgets
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Fonte: Karimi (2011).

Apesar do GPS ser considerado um dos sistemas de posicionamento mais bem
sucedidos em ambientes outdoor, a baixa precisdo em ambientes fechados, devido a atenuacao
do sinal dos satélites, bem como os diversos obstaculos e materiais que compdem esse tipo
de ambiente, tais como: paredes, pisos, divisérias, o torna inadequado para o posicionamento

indoor (veja a figura 3) (KHALAJMEHRABADI et al., 2016).
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Figura 3 — Atenuacdo do sinal dos satélites devido a auséncia de linha de visada direta com o
usudrio

Fonte: Khalajmehrabadi et al. (2016).

Neste sentido, muitos estudos tém se dedicado ao tema em questdo. Um levan-
tamento dos principais sistemas aplicados a esse problema mostra que eles podem ser divi-
didos em duas principais categorias: os que exigem hardware especializado, tais como siste-
mas baseados em comunicagdo por luz visivel, identificacdo por radio frequéncia / Radio —
Frequency IDentification (RFID) e sinais acusticos (WANT et al., 1992), (WARD et al., 1997),
(PRIYANTHA et al., 2000) e (HOSSAIN et al., 2013). A outra categoria, consiste de sistemas
que fazem uso da infra-estrutura existente no ambiente, por exemplo redes Wi-Fi, conforme:
Bahl e Padmanabhan (2000), Castro et al. (2001), Gwon et al. (2004), Wang et al. (2012), Roos
et al. (2002), Ladd et al. (2002), (LI, 2006), Battiti et al. (2002) e Elnahrawy et al. (2004).
Com relagdo as técnicas de implementacado, essas podem ser classificadas em trés métodos:
triangulacdo, andlise de cena (técnica de impressao digital) e proximidade. Esses métodos sdo
discutidos em LIU et al. (2007) e YASSIN et al. (2017), enquanto que em KRISHNAMURTHY
(2015), uma visao geral das principais tecnologias para posicionamento indoor € apresentada.

Pesquisas experimentais relacionadas a ambientes indoor surgiram no inicio dos
anos 1990. Seidel e Rappaport (1992), propuseram modelos de perda de percurso em fun¢do da
distancia, baseados em dados medidos a 914 MHz. Karimi (2011) classifica o desenvolvimento

de sistemas de posicionamento para ambientes fechados / indoor positioning system (IPS) em
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duas geracdes. A figura 4 exibe uma linha do tempo com as principais tecnologias abordadas

neste contexto.

Figura 4 — Linha do tempo - IPS

r' Y

Accuracy/Availability/Affordability

=4
-—
_WiPT
- - Bluetooth
- Cell Based
Ultrasound =~
_- RFID
1995 2000
Time

Fonte: Karimi (2011).

A tecnologia da primeira geracdo, era baseada principalmente no uso de RFID. Neste
caso, o posicionamento € obtido através de nds transmissores e receptores anexados a objetos.
Esta e outras tecnologias sdo discutidas discutidos no capitulo 2. Christ et al. (1993), foi um
dos primeiros trabalhos a sugerir que o posicionamento de um alvo pode ser obtido a partir da
intensidade do sinal recebido / received signal strength (RSS) como fun¢do da distancia entre
o receptor e o transmissor. Por volta do inicio dos anos 2000, novas abordagens e algoritmos
foram propostos, resultando em IPS’s com melhor desempenho. A avaliagdo do desempenho em
questdo pode ser mensurada através de varios critérios, conforme apresentado a seguir:

* Acurdcia: é uma das métricas mais importantes em sistemas de posicionamento. E
utilizada como sindnimo de erro de posicionamento. Geralmente, o erro médio da distancia

entre a posicao estimada e a posi¢do real € adotado como a métrica de desempenho.

Matematicamente isso significa que (KUSHKI ez al., 2012):
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A

E=p—Pp (1.1)

Em que p = (px, py) € p = (px, py), representam o posicionamento estimado e o real,

respectivamente para o espago bidimensional (2D). A norma /2, é definida na equacao 1.2,

¢é frequentemente utilizada para estimar o erro de posicionamento.

e=lp—bll = \/(hr— o)+ By~ py)? (1.2)
O erro definido em 1.2, é geralmente calculado sobre vérias instancias de posiciona-

mento, de forma a obter uma medida geral da acurécia do sistema (acuricia do IPS). Este

procedimento € definido na equacgdo 1.3.

gm —

™=

% Y (i) (1.3)

i=1
Em que €&(i) representa o erro para o i-ésimo posicionamento e N é o niimero total de
estimativas;
Precisdo: a acurdcia fornece uma medida de desempenho somente em funcio da distancia
da posicao real do alvo. A precisao, no entanto, fornece uma distribuicao do erro da
distancia entre a posicao estimada e a posicdo real (LIU et al., 2007). Isso é obtido a
partir da func¢do de distribuicado acumulada / cumulative distribution function (CDF),
que é comumente descrita no formato de percentil, o que facilita a comparagio entre os
algoritmos. Como exemplo, considere os cendrios a seguir:

— Cendrio I: IPS com precisdao de 90% dentro de 2,3 m (90% das estimativas estdo

distantes no méximo 2,3 m do posicionamento real) e 95% dentro de 3,5 m.

— Cendrio II: IPS com precisao de 50% dentro de 2,3 m e 95% dentro de 3,0m.
Para os cendrios acima, poderiamos selecionar o primeiro IPS, dada a maior precisdo para
o intervalo 0 — 2,3 m.
Complexidade: A complexidade de um sistema de posicionamento pode ser atribuida a
fatores como hardware, software e operacao (LIU et al., 2007). Geralmente utiliza-se o
tempo de execucdo dos algoritmos como medida de complexidade. Uma caracteristica a
ser considerada € o modo como o IPS sera executado. Se for executado em um servidor
centralizado, o posicionamento do alvo pode ser estimado rapidamente devido a grande
capacidade de processamento e a fonte de alimentacdo de energia. Se for realizado no
lado da unidade mdvel, os efeitos da complexidade podem ser evidentes. A maioria

das unidades méveis nao possuem grande capacidade de processamento e de duracio de

bateria;
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Robuztez: Definimos robustez como a capacidade de um sistema tratar erros durante a
execucdao. Um IPS robusto deve funcionar mesmo quando parte da informagao necessaria
estiver indisponivel em dado momento ou quando os valores relacionados a entrada
apresentarem um padrdo muito distinto do que usualmente é tratado pelo sistema. Em
um cendrio como este, € necessario que os algoritmos de posicionamento utilizem outras
informagdes, como por exemplo, o RSS referentes a outras unidades trasmissoras, de
forma a maximizar a precisdo neste tipo de situagao;

Escalabilidade: é um atributo que descreve a capacidade de um IPS se adaptar e funcionar
corretamente diante da necessidade de mudancas na dindmica dos ambientes, minimizando
a exigéncia de modifica¢des no sistema ou inclusdo de infra-estrutura extra;

Custo: o custo de um IPS relaciona-se a diversos fatores. Esses fatores incluem tempo,
espaco, peso e energia e custos financeiros (LIU et al., 2007). O fator tempo, por exemplo,
estd relacionado a instalagdo e manutencdo do sistema. Energia € outra varidvel importante.
Tags ativas em sistemas baseados em RFID (como discutido posteriormente), exigem fonte
de energia prépria.

Uma observagdo importante relacionada a esse tema consiste no fato de que a

maioria das pesquisas e tecnologias foram desenvolvidas para uso em escritorios, shoppings,

aeroportos, fabricas e ambientes similares. No entanto, existem outros espagcos onde os sistemas

de posicionamento, rastreamento e navegacao desempenham um papel central em operagdes de

seguranca e resgate. Esses espacos incluem tineis subterraneos, minas e até pocos e cavernas

submarinas. As caracteristicas a seguir referentes a tineis possuem grande impacto em IPS’s

projetados para esta finalidade (PEREIRA et al., 2015):

Alta atenuacgdo do sinal GPS, o que torna esta tecnologia nao adequada para este tipo de
ambiente;

Condig¢0es dificeis para a propagacdo de sinais de rddio dentro dos tineis, como alta
atenuacao, reflexao, refracio e desvanecimento por multiplos caminhos;

Alta temperatura, especialmente em minas e outros espacos onde grandes méaquinas sao
usadas;

Alta umidade, caracteristica que afeta a propagacdo do sinal de radio;

Presenca de gases inflamdveis, levando ao risco de explosdes;

Dificuldade de acesso a fontes de energia elétrica para alimentar a infraestrutura de

posicionamento;
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* Dificuldade ou impossibilidade de instalacdo ou manuten¢do de novos equipamentos.
Em Nerguizian et al. (2006) é proposto um IPS baseado em redes neurais artificiais
/ artificial neural networks (ANN). Os experimentos foram conduzidos em uma galeria sub-
terranea de uma antiga mina de ouro em Quebec, no Canada (veja a figura 5). Para o cendrio
em questdao, no melhor caso, o IPS proposto, possui como retorno uma precisao de 90% a uma

distancia maxima de 2,0m da posicdo real.

Figura 5 — Galeria subterranea de uma antiga mina de ouro em Quebec, no Canada

Fonte: Nerguizian et al. (2006).

Nesse sentido, a escolha do conjunto de métodos e tecnologias a serem utilizadas
para a implementacdo de um IPS deve considerar o tipo de ambiente em que se deseja obter o
posicionamento do alvo, bem como um conjunto particular de requisitos para o posicionamento
e navegacao em funcado do tipo de ambiente. Schneider (2010) identificou um conjunto de
requisitos para o posicionamento e navegacao nesse contexto, incluindo precisao, capacidades
de posicionamento no espaco tridimensional (3D), facilidade de uso, disponibilidade de energia,
custo, entre outros.

Dada a importancia desse tema de pesquisa e suas indmeras aplica¢des, que incluem
a utilizacdo em sistemas de emergéncia, posicionamento de robds moveis e assisténcia de
navegacao em shoppings, escolas, universidades, aeroportos e hospitais, essa tese possui como
objetivo propor novas solucdes baseadas em inferéncia Bayesiana para o projeto e implementagao

de sistemas de posicionamento em ambientes fechados, com foco na maximizacao da precisdo de
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sistemas tridimenionais baseado na tecnolgia IEEE 802.11. A primeira dessas solugdes, consiste
em uma combinacgdo dos algoritmos k — means e naive Bayes, enquanto que o segundo possui
como base, o algoritmo k-vizinhos mais proximos / k — nearest neighbors (kNN) e o teorema
de Bayes. O terceiro algoritmo foi desenvolvido a partir de um sistema multiagente composto
de uma rede Bayesiana e uma rede neural profunda. Esse sistema foi projetado de forma a
combinar os métodos de multilateracio e impressao digital, a fim de reduzir a regido de aquisi¢ao
dos vetores de intensidade de sinal recebido. Além disso, a relagdo entre a qualidade do sinal
recebido e o nivel de ruido, que € influenciada pelo incremento do nimero de pontos de acesso
(APs) e do nimero de pessoas que se deslocam dentro do ambiente, € considerada pelo sistema.

Os experimentos foram conduzidos no primeiro, segundo e terceiro pisos do bloco
académico 707, localizado no campus do Pici, Centro de Tecnologia da Universidade Federal

do Ceard, em Fortaleza, com 4rea total de 3791,05 m?

. Essa pesquisa possui as seguintes
contribui¢des:

* Projeto e implementacao de trés sistemas de posicionamento para ambientes fechados,
baseados em inferéncia Bayesiana, com foco na maximizac¢do da precisdo para o cenario
tridimenional baseado na tecnolgia IEEE 802.11. Os resultados experimentais mostram
que a terceira abordagem proposta apresenta um erro médio de posicionamento inferior a
0,9 m. Esse resultado € mais preciso do que outras abordagens similares (Wi-Fi / Impressao
digital / RSS), que possuem erro médio que varia de 1 a 5Sm (DARDARI et al., 2015), com
média de 3 a 4m (BAHL; PADMANABHAN, 2000).

» Uso de simulacdes para verificar a relagdo entre a precisdo do método multilateracdo e o
incremento do ndmero de pontos de acesso;

* Verificagdo de como o nivel de ruido pode influenciar a precisao dos sistemas de posicio-

namento;

* Discussdo e aplicacdo dos principais algoritmos abordados na literatura.

1.1 Objetivos

1.1.1 Objetivo da Pesquisa

Abordar de forma ampla os principais métodos, tecnologias e desafios para o posicio-
namento em ambientes fechados e com base nesses desafios, propor trés solu¢des fundamentadas

em inferéncia Bayesiana com o objetivo de maximizar a precisio para o cendrio tridimensional
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baseado na tecnolgia IEEE 802.11, de forma a contribuir com um avango na drea de pesquisa.

1.1.2 Objetivos Especificos

* Verificar o efeito da combinacdo entre os métodos multilateracdo e impressao digital com
relacdo a precisdo dos sistemas;

* Verificar se o incremento de pontos de acesso (APs) e do niimero de pessoas no ambiente
pode influenciar no desempenho de sistemas de posicionamento para ambientes fechados;

* Comparar as solugdes propostas com as principais abordagens encontradas na literatura.

1.2 Justificativa e Motivacao

Virios fatores justificam o desenvolvimento desse trabalho, esses fatores incluem as
inimeras aplicacdes potenciais, a imprecisdo do GPS em ambientes fechados, devido a auséncia
de linha de visada entre o transmissor e o receptor, o fato de que as pessoas passam a maior
parte do tempo em ambientes fechados, sejam em casa, no escritério ou em um ambiente similar.
Além disso, o problema de posicionamento em ambientes fechados ainda continua sendo um
problema em aberto, principalemente em relagdo a maximizacdo da precisdo que é fundamental
para algumas situagdes especificas. Se para um IPS desenvolvido para localizar pacientes
em um hospital, ndo € necessdrio uma precisdao que possua como retorno poucos centimetros,
bastando uma precisdo da ordem de 1 — 2 m, um sistema de navegacdo indoor desenvolvido para
deficientes visuais é muito dependente da precisdo. Nesse sentido, essa pesquisa € motivada pelo
desafio da maximizagdo da precisdo de sistemas de posicionamento indoor, principalmente para

o cenario 3D.

1.3 Metodologia

* Identificac@o dos pontos de referéncia (pontos de coleta de sinais);

* Identificacdo dos APs;

* Teste das flutuagdes do sinal a partir de um ponto fixo;

* Realizacdo do levantamento da impressdao digital do ambiente e armazenamento das
amostras no banco de dados;

* Implementac¢do dos algoritmos;

* Realizagdo de leituras em diferentes pontos do ambiente e aplicacdo dos algoritmos;
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* Comparacao dos desempenhos dos algoritmos quando apenas o algorimto baseado no
conceito de multiagente, € implementado a partir da combinacao entre multilateracdo e
impressao digital;

* Comparacdo do desempenho dos algoritmos quando todos os algoritmos baseados em
impressao digital sdo implementados a partir da combinagdo desse método com a multila-
teracao;

* Verificagdo da relacdo entre o incremento do nimero de APs e a precisdao do método de

multilateracao.

1.4 'Trabalhos Relacionados

Existem vérios trabalhos relacionados ao tema de pesquisa em questdo. Muitos
desses trabalhos sdo apresentados ao decorrer desse trabalho.

Na pesquisa conduzida por Liu et al. (2012), é proposta uma abordagem de localiza-
¢ao assistida por pares para reduzir grandes erros. Este sistema obtém boas estimativas através
do mapeamento conjunto entre dois dispositivos moveis em diferentes posi¢des a partir de um
mapa de assinatura Wi-Fi sujeito a restri¢cdes de alcance. Segundo os autores, os experimentos
mostram que essa abordagem pode limitar o erro mdximo em 2m. No entanto, este sistema
requer um servidor central para receber medi¢des de sinal e determinar as localizacdes dos pares
e as distancias entre eles.

Em Li et al. (2016), uma abordagem chamada FS - kNN ¢ proposta para considerar
o fato de que as diferencas da intensidade de sinal recebido em niveis distintos de RSS nao
significam necessariamente diferencas semelhantes na distancia geométrica. Os experimentos
relatados mostram que 80% estimativas de posicionamento estio distantes no maximo 2,5 m da
posicao real.

No estudo realizado por Roos er al. (2002), sugere-se a aplicacdo de aprendizado
de maquina para o problema de posicionamento indoor. O algoritmo kNN e dois métodos,
chamados de kernel e histograma, baseados no teorema de Bayes, sdo propostos como solu¢@o
do problema. Os resultados mostram que os métodos probabilisticos produziram resultados
ligeiramente melhores que o algoritmo ANN.

Em Fang et al. (2017) € proposto um algoritmo de posicionamento para redes de
sensores sem fio baseado em um modelo evoluciondrio multi-objetivo, de forma a minimizar os

efeitos do ruido sobre o sistema posicionamento. A precisdo média reportada para este sistema
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foi de 1,02 m no melhor caso.

O estudo conduzido por Gan et al. (2017), é proposto um sistema de posicionamento
baseado em aprendizagem profunda, intitulado DL-IMPS. Este sistema busca resolver o problema
da baixa precisdo em relacdo ao posicionamento em ambientes fechados em cendrios com
conjunto de treinamentos insuficientes. Este sistema de posicionamento 2D, segundo os autores
possui um erro médio de 0,52 m e 93,3% das estimativas dentro de um 1 m.

Na pesquisa desenvolvida por Huang e Manh (2016), foi proposto um sistema de
posicionamento baseado em uma funcdo Kernel multidimensional, que foi aplicada de forma
a tratar a dissimilaridade do RSS em regides vizinhas ocorridas devido as flutucdes de sinais
em ambientes fechados, o que pode resultar em baixa precisao na estimativa de posicionamento
do alvo. Segundo os autores, o sistema apresenta melhores resultados em relacdo a trabalhos
anteriores em ambientes de teste com ruido, movimento dinamico de objetos, e variacdo de RSS
multimodal.

Em Bozkurt et al. (2015), diferentes algoritmos para aprendizado de maquina aplica-
dos ao posicionamento indoor, sdo comparados em relacdo a precisdo e tempo de processamento.

O sistema de posicionamento COMPASS proposto por King et al. (2006) utiliza
conjuntamente a infra-estrutura IEEE 802.11 e bussolas digitais disponiveis em telefones celu-
lares de forma a determinar o posicionamento e orientagdo do alvo. Segundo os autores este
procedimento conjunto pode representar uma melhora significativa na precisdo de sistemas de
posicionamento. O erro médio relatado para essa abordagem € 1,65 m para um ambiente de 312
m?.

Em Cota-Ruiz et al. (2013), os autores introduzem um algoritmo de posicionamento
distribuido para uma rede de sensores sem fio, em que um conjunto de sensores determina
a posicdo de forma iterativa e colaborativa através de estimativas de alcance e posi¢do para
os vizinhos dentro de sua faixa de comunicacdo. Os autores concluem que o desempenho da
abordagem proposta é bastante competitiva quando comparado com abordagens similares. No
entanto, a atenuagao devido ao desvanecimento por multipercursos ou multicaminhos podem
degradar o desempenho do sistema. Além disso, o método proposto possui grande custo
computacional comparado com sistemas similares.

Um estudo conduzido por Shareef et al. (2007), discute sobre os efeitos do ruido em
sistemas de posicionamento. Nessa pesquisa, compara-se qualitativamente o desempenho de trés

diferentes familias de redes neurais e os resultados sdo comparados com duas variantes do filtro
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de Kalman que sdo tradicionalmente usados em sistemas de posicionamento.
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1.6 Organizacao da Tese

O restante dessa tese estd organizada na seguinte maneira: no capitulo II, apresenta-se
os principais métodos para posicionamento para ambientes fechados, que incluem a triangulagao,
impressao digital e proximidade. Ao final secdo 2.1, uma comparacio entre os métodos é
apresentada. Na secdo 2.2 apresenta-se uma discussao das principais tecnologias relacionadas ao
posicionamento indoor. Os modelos de propagacgdo e algoritmos mais comuns utilizados nesse
contexto, sdo discutidos nas se¢des 2.3 e 2.4 respectivamente.

No capitulo III, a se¢do 3.1 apresenta uma visdo geral sobre o procedimento de
aquisicao de sinais e introduz os algoritmos kmeans-NB e KNN-Bayes. Esses algoritmos sdo
discutidos em detalhes nas se¢oes 3.2 e 3.3.

O capitulo IV, na secado 4.1 discute-se de forma geral sobre a terceiro abordagem
proposta (IPS-MAS). Uma apresentacdo detalhada desse IPS, incluindo, uma visao geral sobre
sistemas multiagentes, redes Bayesianas, redes neurais e a arquitetura do sistema, € discutida nas
secoes 4.2 —4.5.

No capitulo V apresenta-se o cendrio de testes, a metodologia adotada nos experi-
mentos e os resultados computacionais. Por fim, sdo apresentadas as conclusdes e trabalhos

futuros.
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2 FUNDAMENTACAO TEORICA

Neste capitulo, apresenta-se uma visao geral sobre as principais abordagens relacio-
nadas ao posicionamento indoor. A se¢do 2.1, introduz os principais métodos de posicionamento
indoor. As tecnologias relacionadas ao problema em questio sao abordadas na sec¢do 2.2. Na
secdo 2.3 os principais modelos de propagacdo em ambientes indoor sdo apresentados, e por fim,
os principais algoritmos de baseado em reconhecimento de padrdes, sdo apresentados na secdo

2.4.

2.1 Métodos para posicionamento indoor

Na literatura é comum classificar em trés os métodos de estimativa de posicionamento
em ambientes fechados: triangulagdo, impressao digital e proximidade. Esses métodos sao

discutidos a seguir:
2.1.1 Triangulacdo

O método de triangulagdo utiliza propriedades geométricas baseadas em tridangulos

para estimar a localiza¢do do usudrio. Este método € classificado em duas categorias:
2.1.1.1 Lateragdo circular

Neste método, o posicionamento do alvo € obtido a partir da sua distancia a maltiplos
APs. Usualmente utiliza-se a técnica TOA para estimar essas distancias. Para um posicionamento
2D € necessario pelo menos trés APs como pontos de referéncia. A figura 6 ilustra este conceito.

Matematicamente, este método pode ser definido da seguinte forma:

Definicdo 2.1.1. Sejam (x1,y1), (x2,y2) e (x3,y3) as coordenadas cartesianas 2D referentes a
trés APs centrados em uma regido circular e cujas distancias (raios) até o alvo (x,y), sdo dadas

por riz, parai=1,2,---,3, que resulta na equacdo 2.1.
= (—x) + (=)’ 2.1)

A posi¢do do alvo € estimada a partir da intersec@o dos circulos (KUSHKI et al.,
2012). Isso € feito através da aplicacdo do método dos minimos quadrados ao sistema de

equacdes definido em 2.1, que resulta nas equagdes 2.2 e 2.3.
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rp—rf = (x—x)? + (=) = (x—x1)* = (v —y1)° (2.2)

= X7 +y7 —x1 —y1 — 2x(x; —x1) — 2y(xi — ;) (2.3)

Figura 6 — IPS baseado em lateragdo circular
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Se considerarmos i = 1,2,--- , N, pode-se reescrever o sistema apresentado na equa-

¢do0 2.3 em forma matricial, resultando na equagdo 2.4.
HX =B 2.4)
em que X = [x, y]T, descreve as coordenadas que devem ser determinadas,
X2 —X1 Y2—)1
H= : : (2.5)
Xn—X1 Yn—)Y1

(r1+13) + (3 +3) — (xF+3)

B=— (2.6)

2
(rf +ra) + (5 +y) — (07 +57)
Assim o método dos minimos quadrados pode ser aplicado de forma a estimar o

posicionamento do alvo através da equacgao 2.7 (KUSHKI et al., 2012).
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X=(H'H)"'H'B (2.7)

De modo andlogo ao caso do 2D, o posicionamento para o espago tridimensional
(3D), denominado de multilateragdo (ML), € obtido a partir da estimativa da distancia dos APs
ao alvo. Neste caso, necessita-se de pelo menos quatro APs. Centrada em cada um dos APs,
define-se uma esfera com raio r, sendo a localiza¢do do usudrio definida pela interseccao de tais
esferas. O sistema é andlogo ao GPS. A figura 7 ilustra este conceito, equanto que a equagdo 2.8

descreve matematicamente esta expansao.

Figura 7 — IPS baseado em laterag@o para o cendrio 3D

Posicionamento:

EE doalvoem 3D |

rp= (=) + (=) + (2 -2)? (2.8)
2.1.1.2 Lateragdo Hiperbdlica

O método de lateracao hiperbdlica utiliza a técnica conhecida como diferenca do
tempo de chegada diferenca do tempo da chegada / time difference of Arrival (TDOA), para
obter a posicao do alvo. Similar a lateracdo circular, um sistema de equacdes pode ser composto
da diferenca entre todos os pares de pontos d;;, para Vi, j;i # j, conforme a equacdo definida em

29¢2.10.

d,'j =ri—r; (2-9)
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= =)+ =% = =2+ -y (2.10)

A solugdo para este sistema de equacdes pode ser obtido de forma similar a lateragao

circular (KUSHKI et al., 2012) , observando que:
(r1+dn)?*=r? (2.11)
2,2 2 2 _
x; +y; —x1 —y1 —2x(x; —x1) = 2y(yi —y1) —dit —2djyr =0 (2.12)

O sistema de equagdes definido nas equagdes 2.11 e 2.12, pode ser escrito de forma

matricial como:
HX =B (2.13)
Em que:
X =[xy, (2.14)
Xp—=X1 Y2—Yy1 121

H= (2.15)
Xn—X1 Yn—Y1 Tnl
(G +YF) — (x +Y}) —dj,

B=.
2

(2.16)
(p +Y7) — (6] +Y7) —dy,
Aplicando o método dos minimos quadrados, obtém-se a estimativa definida na

equagdo 2.17. O conceito de lateracdo hiperbdlica € ilustrado na figura 8.

X=(H'H)"'H'B (2.17)
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Figura 8 — IPS baseado em lateracdo hiperbdlica
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Fonte: Kushki ef al. (2012).

2.1.1.3 Angulacdo

Angulacdo € uma método que faz uso de uma técnica chamada angulo de chegada /
Angle of arrival (AOA), que no contexto de sistemas de posicionamento, estima o posiciona-
mento do alvo através da intersec@o de varios pares de linhas em relacdo a dire¢do dos angulos,
cada uma formada pelo raio circular a partir de um conjunto de APs. Nesta abordagem, o angulo
0; entre o receptor e transmissor, € obtido conforme a equagdo 2.18. A figura 9 ilustra este

procedimento.

i=1,2, .k (2.18)
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Figura 9 — IPS baseado no método de angulacdo

Fonte: Frattasi e Rosa (2017).

Baseado na equacdo 2.18, conforme discutido em Frattasi e Rosa (2017) € possivel

estimar o posicionamento do alvo através do seguinte procedimento:
(x; —x)sin(6;) = (yi —y)cos(6;) (2.19)
A equacdo definida em 2.19, pode ser escrita de forma matricial como:
HX =B (2.20)
Em que:
X = [x,y]", (2.21)

—sin(6;) cos(6;)
H= ; : (2.22)
—sin(6,) cos(6,)

yicos(0;) —xpsin(6;)
: : (2.23)

N —

y1cos(6,) —xisin(6,)
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Aplicando o método dos minimos quadrados, obtém-se a estimativa definida na

equacdo 2.24.
X=(H'H)'H'B (2.24)

Mais detalhes sobre a implementacao deste método podem ser obtidos em Werner

(2014), Kushki er al. (2012) e Frattasi e Rosa (2017).
2.1.2 Impressao digital

E uma técnica baseada em reconhecimento de padrdes que envolve a divisdo do
sistema de posicionamento em duas fases, off-line e on-line. Na fase off-line, os vetores RSS
sdo coletados com relagdo a todos os APs detectados. Esta coleta ocorre em vdrias posi¢des
pré-estabelecidas chamadas de pontos de referéncia / re ference points (RP). Assim, cada RP é
representado por sua impressado digital e todos os vetores RSS formam as impressoes digitais do
ambiente e sdo armazenados em um banco de dados para consulta on-line, chamado de radio map
(HE; CHAN, 2016). A fase on-line consiste em ler um vetor RSS e por meio de um algoritmo de
classificacdo, comparar este vetor com o armazenado no banco de dados durante a fase off-line,
estimando assim o posicionamento do usudrio. A figura 10 exibe o modelo de um IPS baseado

na técnica em questao.

Figura 10 — Localizacdo indoor baseada no método de impressao digital
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Fonte: o autor.

Definicao 2.1.2. Formalmente, o conceito de impressao digital, discutido em Morales et al.

(2015), Khalajmehrabadi et al. (2016) e Au et al. (2013), consiste em dividir o espaco indoor em
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um conjunto de RPs, em que cada RP ¢ identificado por uma coordenada cartesiana p; = (x,y),
ou p; = (x,y,2), Vj, 1 < j <N, para sistemas em 2D e 3D, respectivamente. Posicionado em
cada uma destas coordenadas, sdo coletados amostras de RSS de tamanhos iguais em instantes
de tempo t,,, form = 1,2,--- N, com intensidades RSS dadas por <s§.(t1),s§.(t2), fe ,si-(tM)>
para cada RP, em que i indica o ponto de acesso / access point (AP) selecionado a partir de
um conjunto L = {APl,APZ, ‘e ,APL}. As amostras RSS coletadas em relacdo a todos os
APs considerando o tempo 7, em p; sdo armazenadas em um vetor de sinal dado por s =
[(S’J (11),85(r2),- - ,s?(tN)] "0 radio map para este experimento pode ser representado pela

matriz de sinais definida em 2.25.

s1(tm)  55(tm) sy (tm)

S% (tm) S%(tm) e Szz\l(tm)
S(tm) = s1(tm),52(tm), -~ ssn(tm) = | o (2.25)

S% (tm) S%(IM) o sy (tm)
Na fase on-line, é obtido o vetor de sinais s = {01,072, -+ ,0n}, em que 0;, i =
1,2,---,N, representa o conjunto de observagdes RSS. O objetivo é determinar o posicionamento

pj, com base em um algoritmo que compare as leituras realizadas na fase on-line e os valores
armazenados no radio map. Uma desvantagem deste método implementado a partir de Wi-Fi
(um conjunto de especificagdes para redes locais sem fio baseada no padrao IEEE 802.11),
consiste na possibilidade de um alvo ser mapeado para uma posi¢ao diferente do real, devido
a variagOes do sinal no ambiente. Este problema foi observado em Liu et al. (2012), Sun et
al. (2013), Tsuda et al. (2013), He e Chan (2016), Wang et al. (2012) e Shen et al. (2013).
Uma maior precisdo pode ser obtida considerando-se conjuntamente observacdes temporais
ou espaciais (HE; CHAN, 2016). Padrdes temporais refere-se a uma sequéncia do sinal RSS
observada durante uma trajetdria percorrida pelo alvo, enquanto que observacdes espaciais estao
relacionados a distribuicdo geogréfica de sinais. Essas obervacdes sdo uteis para corrigir e
restringir o posicionamento do alvo, tomando como base o RSS, a localizacao dos APs e a
cobertura do sinal em ambientes com altas flutuacoes. Neste sentido, o IPS Walkie-markie
proposto em Shen et al. (2013), registra valores de RSS em diferentes regides com o usudrio
em movimento. Como ilustrado na figura 11, pecerbe-se que o RSS tende a aumentar a medida
que o usudrio se movimenta da esquerda para a direita ao longo de um caminho coberto por um
AP. Quando o usudrio se distancia do AP, a tendéncia de RSS inverte. Esta sequéncia de dados

RSS relacionadas a varios trajetos sdo usados por Walkie-Markie com o objetivo de construir um
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padrdo e assim identificar o posicionamento do alvo de forma estdtica ou em movimento.

Figura 11 — Tlustracdo do padrdo de sinais temporais no sistema Walkie-Markie
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Fonte: Shen et al. (2013).

2.1.3 Proximidade

Dentre os trés métodos para posicionamento indoor, o0 método de proximidade é
considerado o mais simples. Trata-se de um método que se baseia puramente na proximidade
do dispositivo mével a locais previamente conhecidos. Assim, a detec¢do de proximidade ndo
fornece uma coordenada como estimativa de posicionamento do alvo. Neste caso, a localiza¢do
¢ dada setorialmente, isto €, o sistema retorna o cdomodo ou uma regido em que o alvo pode estar
em um determinado momento. A implementacdo de um IPS a partir deste conceito, consiste em
um ambiente com um grid de antenas com posi¢des conhecidas. Quando um dispositivo mével
¢ detectado em movimento, a antena mais proxima € usada para estimar a localiza¢do do alvo
(KAVEHRAD et al., 2015). Quando sinais de multiplas fontes s@o detectados, a antena com o

sinal mais forte € usada para indicar sua localizacio. Este procedimento € ilustrado na figura 12.
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Figura 12 — Localizacdo indoor baseada no método de proximidade
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Fonte: Kavehrad et al. (2015).

A tabela 2, apresenta as principais vantagens e limitacoes para os métodos discutidos.

Tabela 2 — Comparagao entre os métodos para posicionamento indoor

Vantagens:

1. Nao € necessario um conhecimento prévio do comportamento do sinal

no ambiente;

2. Facil implementacio;

Triangulacdo | Limitagdes:

1. Baixa precisdo devido a alta variacdo em ambientes fechados;

2. O sistema de posicionamento € altamente dependente do nimero de APs.

Para um posicionamento 3D, necessita-se de pelo menos quatro APs;

3. E necessdrio ter conhecimento prévio sobre a localizacdo dos APs.

Vantagens:

1. Alta precisao;

2. Boa integrac@o com os algoritmos classicos de classificagdo;

3. O método lida bem com a variacao do sinal em ambientes fechados.

Limitacgdes:

1. E necessdrio um conhecimento prévio do comportamento do

sinal no ambiente;

2. Necessita-se de uma base de dados robusta.

Vantagens:

1. Método de fécil implementagao;

2. Pode ser implementado a partir de uma grande variedade de tecnologias

para posicioamento indoor;

Proximidade | Limitacdes:

1. Baixa precisdo. A estimativa da localizac@o do usudrio é dada por uma

regido aproximada e ndo através de uma coordenada;

2. Sdo necessdrias vdrias antenas para uma localizacdo aceitdvel;

3. E necessdrio ter conhecimento prévio sobre a localizacdo dos APs.
Fonte: o autor.

Impressao di-
gital
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2.2 Tecnologias de comunicacao sem fio para posicionamento indoor

2.2.1 WLAN (IEEE 802.11)

A tecnologia Wi-Fi é considerada a mais popular em IPS. Isso se da porque est4
presente em indmeros ambientes, tais como, residéncias, escritorios, shoppings e universidades,
além de ser compativel com muitos dispositivos que incluem telefones, laptops e tablets, motivo
pelo qual, o custo com a infraestrutura para implementagdo de um IPS com esta tecnologia é
minimizada. Contudo, uma desvantagem dessa tecnologia consiste na variabilidade do sinal rela-
cionado a indmeras varidveis, tais como a movimentacao de pessoas no ambiente, inteferéncia
entre APs entre outros fatores. Neste sentido, métodos como TOA e TDOA , tornam-se inefi-
cientes quando deseja-se obter a distancia de um determinado ponto aos APs baseado em uma
observacao RSS (KRISHNAMURTHY, 2015). Por essa razdo, métodos baseados em impressao
digital t€ém sido amplamente discutidos nesse contexto. Bahl e Padmanabhan (2000), foi um
dos primeiros trabalhos a aplicar o conceito de impressao digital baseado em sinal Wi-Fi. Entre
os experimentos realizados pelos autores destacam-se: a relac@o entre orientagdo do usudrio e
a precisao do sistema; e a obteng¢do de um parametro chamado de fator de atenuagdo, que foi
estimada a partir da média das diferencas entre os RSS’s com linha de visada entre os transmissor
e receptor e com a obstrucao de paredes.

Outro trabalho bastante citado na literatura foi proposto por Wang et al. (2012).
Neste trabalho, os autores propdem um IPS baseado em Wi-Fi chamado de Horus que funciona
da seguinte maneira: dada uma sequéncia de observacdes obtidas em cada AP, ordena-se estes
AP em ordem decrescente de acordo com o RSS. Em seguida, seleciona-se o0 AP com sinal médio
mais forte e entdo, a partir desse AP, calcula-se a probabilidade de cada posi¢do. Battiti et al.
(2002) propdem o uso de uma ANN perceptron de multiplas camadas / multilayer perceptron
(MLP) de forma a implementar um mapeamento entre as medi¢des do sinal bruto e a posi¢ao do
alvo. Essa rede neural foi implementada com uma camada escondida e treinada com o algoritmo
método de secante em um passo / one-step secant (OSS). A precisdo média alcancada foi de

aproximadamente 2,3 m.

2.2.2 WPAN (IEEE 802.15)

Bluetooth é frequentemente classificado como uma tecnologia de rede pessoal sem

fio, sendo a poténcia de transmissdo e alcance muito menor do que uma rede Wi-Fi, ocupando um
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espaco limitado em torno do usudrio (geralmente 10 m) (KRISHNAMURTHY, 2015). Sua versdao
mais recente, Bluetooth de baixa energia / Bluetooth low energy (BLE), também conhecido
como Bluetooth Smart, pode fornecer dados aprimorados a uma taxa de 24 Mbps com alcance
de cobertura de 70 — 100m com maior eficiéncia energética, em comparacao com versdes mais
antigas (ZAFARI et al., 2016).

Uma das vantagens da utilizacdo do Bluetooth na implementacido de um IPS, consiste
no fato dessa tecnologia possuir baixo consumo de energia. Especificamente, este consumo
representa algo em torno de 81-120 mW em comparacgao com o Wi-Fi, que usa 890-1600 mW
(FROST et al., 2012). Contudo, pelo fato de ter sido projetado de forma a abranger uma pequena
regido, sua aplicacdo IPS destina-se a cendrios de pequena escala (FROST et al., 2012).

O Bluetooth tém sido abordado como tecnologia para posicionamento indoor em
muitos trabalhos. Frost ef al. (2012), propdem a aplica¢do da técnica de impressao digital com
Bluetooth resultando em uma precisao média de 2 m. TOPAZ (TADLYS, 2004) € uma IPS
baseado em Bluetooth composto de trés tipos de elementos: servidor de posicionamento, pontos
de acesso sem fio e tags sem fio. O desempenho do sistema o torna adequado para rastrear

pessoas e objetos, com uma precisdo 95% dentro de 2 m.

2.2.3 Identificagdo por radiofrequéncia (RFID)

Consiste em uma tecnologia que utiliza ondas de radio que rastreia e determina
o posionamento e a orientagdo de um alvo. Isso € feito, através da leitura de informagdes
armazenadas em uma tag anexada a um objeto. Essas fags sao classificadas em passivas e ativas.
Tags passivas refletem o sinal de radio frequéncia / radio frequency (RF) emitido pelo leitor
com a modulacao espefifica da tag, sendo possivel assim determinar seu posicionamento. Este
tipo tag opera sem a necessidade de bateria, reduzindo o custo de implementa¢do de um sistema
com esta tecnologia. O alcance tipico de leitura € de 1 —2m e o custo dos leitores € relativamente
alto (LIU et al., 2007). Tags ativas possuem fonte prépria de energia, isso permite ampliar a
faixa de varredura do sinal que pode ser detectado pelos leitores.

A desvantagem do uso de RFID é que esta tecnologia ndo € tipicamente implemen-
tada em smartphones (KRISHNAMURTHY, 2015). SpotOn (HIGHTOWER; BORRIELLO,
2000) é um exemplo de IPS que utiliza essa tecnologia para posicionamento 3D. Outro IPS
conhecido € LANDMARC (NI et al., 2003) cuja a precisdo relatada € de aproximadamente 1 m,

considerando 50° percentil.
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2.2.4 Dead Reckoning

Este método estima a posi¢do e movimentacdo de um alvo em ambiente em termos
de velocidade, distancia e dire¢do, tomando como base seu posicionamento no passado. Assim
como outros métodos de posicionamento, estd sujeito a erros de estimativa, principalmente erro
cumulativo ao decorrer do tempo (BOWDITCH et al., 2002). No entanto, sua precisdo pode
ser significativamente melhorada usando métodos hibridos para obter uma nova posi¢cao, como
demonstrado em Sharp e Yu (2014). Este método foi considerado por Beauregard e Haas (2006).
Neste trabalho, uma ANN foi aplicada utilizando varidveis como velocidade de deslocamento e
o numero de passos dados por usudrios, obtidos através de um sensor. A precisdo reportada é de

10 metros apds 1 Km de movimentacao.
2.2.5 Posicionamento Aciistico

A implementacdo de um IPS a partir desta tecnologia, envolve uso de hardware de
forma a instalar nés ultrassonicos em usudrios e objetos. Esses nds representam transmissores e
receptores que emitem sinais, obtendo a posi¢ao do alvo. Este procedimento € usualmente feito
através de técnicas como TOA. Um trabalho cldssico que utiliza esta abordagem € active bat
project (WARD et al., 1997). Neste sistema, utilizou-se a técnica TOA e a precisao reportada é
de poucos centimetros. Este resultado representa uma precisao melhor que sistemas baseados em
Wi-Fi ou Bluetooth, porém um sistema baseado em ultrasom necessita de linha de visada, uma
vez que que som ou ultrasom ndo podem penetrar paredes (KRISHNAMURTHY, 2015). Além
disso, a maioria dos dispositivos mdveis ndo possuem tecnologia ultrassom. Outras desvantagens,
como a impossibilidade de localizar mais de um alvo ao mesmo tempo, sio discutidas em Ward

et al. (1997).
2.2.6 Luzvisivel

A comunicagdo por luz visivel / visible light communication (VLC) € uma tecnologia
de comunicacdo sem fio na qual a transmissao de dados € realizada através da luz a 380 — 780 nm
de comprimento de onda. VLC usa lampadas fluorescentes compactas / compact fluorescent
lamp (CFL) e diodo emissor de luz / light emitting diode (LED) para transmitir sinais a 10
kb/s e 500 Mb/s respectivamente (NDJIONGUE et al., 2015). O IPS VL é uma tecnologia

de posicionamento que utiliza a luz visivel para determinar a posicao de um alvo para fins de
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rastreamento e navegacao (SAKPERE et al., 2017). Este sistema, consiste de uma fonte de luz
ou estacdo base (transmissor), um terminal mével ou sensor de imagem (receptor) e um canal de
comunicacao (ZHANG et al., 2014).

Em Zheng et al. (2017), € proposto um IPS com alta precisdo de posicionamento,
baseado em comunicacdo por luz visivel. O erro médio de posicionamento é de 1,72 cm para o
cendrio 2D e 3 cm para 3D. Porém a implementa¢do de um IPS a partir desse conceito possui alto

custo, uma vez que transmissores e receptores devem ser projetados baseado nessa tecnologia.

2.3 Modelos de Propagacao para Ambientes Fechados

Como discutido no inicio desse capitulo, a estimativa de posicionamento de usudrios
e objetos em ambientes fechados, apresenta muitas dificuldades em relagdo ao contexto out-
door. Estas dificuldades estdo relacionadas a atenuacdo do sinal devido aos diversos obstaculos
presentes nesse tipo de ambiente. Na literatura existem muitos trabalhos, ambos tedricos e
experimentais, que propuseram a aplicacao de modelos de propagacao indoor a estimativa do
comportamento do sinal em ambientes fechados. Para maiores detalhes sobre estes modelos veja
Damosso e Correia (1999). Nesta secao sao apresentados os principais modelos de propagagao

utilizados no contexto indoor.

2.3.1 one-slope model (1SM)

O modelo one-slope model (1SM) (DAMOSSO; CORREIA, 1999), assume que ha
uma dependéncia linear entre a perda de percurso e o logaritmo da distancia entre o transmissor
e o receptor. Trata-se um modelo muito simples por ndo considerar os vérios obstdculos
caracteristicos de ambientes fechados, tornando o modelo impreciso para esse tipo de ambiente.

A equagdo para este modelo é dada por:
L=Ly+10.y.log(d) (2.26)

Onde Lj representa a perda por percurso a um metro da antena irradiante para
uma determinada a frequéncia em dB; Y € o coeficiente de propagacdo e d € a distancia entre
transmissor e receptor em metros. Valores tipos de Ly e n, para um ambiente similar a um
escritorio a uma frequéncia de 2.45 GHZ, sdo de Ly = 40,2 e v = 4,2 (KWIECIEN et al., 2009).
Este modelo € de facil implementacao, uma vez que apenas a distdncia entre o transmissor e

receptor € utilizado como parametro de entrada.
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2.3.2 Cost231 multi-wall model

O modelo modelo de Multi-Parede e Piso / Cost 231 multi-wall model (MWM)
(DAMOSSO; CORREIA, 1999) considera a atenuacao do sinal como a perda no espago livre
adicionada a perda resultante do nimeros de paredes e pisos penetrados entre o transmissor e

receptor. O modelo em questdo € dado por:

kf+2
ket ™

1 i
L=Lir+Le+ ) kwilwi+k/ Ly (2.27)
i=1

em que:

Ly r = Perda no espaco livre entre transmissor e receptor em dB;

L. = Constante de perda em dB;

* k,; = Numero de paredes penetradas do tipo i;

ks = Numero de pisos penetrados;

L,,; = Fator de atenuac¢do nas paredes do tipo i em dB;

L = Fator de atenuag@o entre pisos adjacentes em dB;

b = Parametro empirico;
* [ = Numero de paredes distintas.

Observou-se que a perda total de piso € uma fun¢do nao linear do nimero de pavi-
mentos penetrados (DAMOSSO; CORREIA, 1999). Esta caracteristica € levada em consideracio
pela introducdo de um fator empirico b. Por razdes préticas, o nimero de paredes distintas deve
ser mantido baixo, pois a diferenca entre os varios tipos de paredes em relagdo a atenuacgao €
pequena e seu significado no modelo ndo esta claro (DAMOSSO; CORREIA, 1999). Os tipos de
paredes em questdo sdo exibidos na tabela 3, enquanto que os valores tipicos de L1, Ly, Ly € b,

sdo exibidos na tabela 4.

Tabela 3 — Tipos de paredes utilizadas no Cost 231 MWM

Tipo de Parede Descri¢ao
Ly, Parede com espessura < 10cm
Ly» Parede com espessura > 10cm

Fonte: Damosso e Correia (1999).
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Tabela 4 — Valores para L1, Ly, Ly € b em dB - Cost 231 MWM
Multi-Wall MWM)

Ambiente | L, [dB] | L, [dB] | Ly [dB] b
Denso
Um piso
Dois Pisos 34 6,9 18,3 0,46
Multi-pisos
Aberto 34 6,9 18,3 0,46
Amplo 3,4 6,9 18,3 0,46
Corredor 34 6,9 18,3 0,46

Fonte: Damosso e Correia (1999).

2.3.3 ITU indoor Path Loss Model

O modelo de propagac¢ado indoor unido internacional de telecomunicacdes / International
Telecommunication Union (ITU) estima a perda por percurso dentro ambiente fechado. Este

modelo € formalmente expresso como (PARKINSON; SPILKER, 2005):
L= 20log(f)+Nplog(d)+Lf(np) —28dB (2.28)

Em que Lf(n,), é o fator referente a perda de penetragdo do piso e n, representa o
nimero de pisos entre transmissor e o receptor. A Tabela 5 exibe os valores representativos para
o coeficiente de perda no espaco livre entre transmissor e receptor, N,, dado pela ITU, enquanto

que a Tabela 6, fornece os valores referentes a Lf(n).

Tabela 5 — Valores de N para o modelo ITU

Frequéncia Residencial | Escritério | Comercial
900 MHZ - 33 20
1.2-13 GHZ - 32 22
1.8 -2 GHZ 28 30 22
4 GHZ - 28 22
5.2GHZ - 31 -
60 GHZ 22 17

Fonte: Parkinson e Spilker (1996).
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Tabela 6 — Valores de Lf(n,) para o modelo ITU

Frequéncia | Residencial | Escritério Comercial
9n,=1)

900 MHZ - 19(n, =2) -
24(n), = 3)

1.8-2GHZ 4n, 15+4(n, — 1) | 6+3(n, —1)

52GHZ - 16 (n, =1) —

Fonte: Parkinson e Spilker (1996).

2.3.4 Linear attenuation model

Este modelo assim como o 1SM, assume uma dependéncia linear entre a perda de
percurso e o logaritmo da distancia entre o transmissor e o receptor. A diferenca fundamental
como relagdo ao 1SM, consiste na inclusdo de um coeficiente de atenuacdo ¢, de forma a tornar

o modelo mais preciso. O modelo é dado pela equacao 2.29 (DAMOSSO; CORREIA, 1999).
L=Lir+o,d (2.29)

Em alguns estudos, termos adicionais relacionados a perdas por paredes sdo adicio-

nados ao modelo, de forma a melhorar a performance (KARLSSON; LUND, 2018).

2.3.5 Wall and floor factor models

Este modelo dado pela equagdo 2.30, assume que a perda de percurso para ambientes
fechados € dado pela perda no espago livre adicionado aos pardmetros ny € n,,, que representam
respectivamente, o nimero de pisos e paredes entre o transmissor e o receptor. Em que /¢ € [,,, sdo
os fatores de atenuacao referentes a pisos e paredes respectivamente (DAMOSSO; CORREIA,
1999).

L=Ly+20.y.log(d)+nsLs+ny,L, (2.30)
2.3.6 Ray launching model

O modelo de lancamento de raios (ray launching), ilustrado na figura 13, é baseado
na Otica geométrica que simula a propagacdo de ondas de rddio de acordo com os fendmenos
fisicos, tais como reflexao, refracdo e difracdo. Esta abordagem, verifica se hd linha de visada
entre o transmissor e o receptor e entdo os raios sao langados a apartir de uma fonte transmissora

em direcOes especificadas. Os raios sao rastreados de forma a verificar se eles sdo interceptados
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por um obstaculo. Se ndo forem interceptados, novos raios sdo lancados até que atingam o

receptor ou um nimero maximo de iteracdes seja atingido.

Figura 13 — Modelo de lancamento de raios

/
4 :
2 Refracao

/
/
/

/

Reflexag

X

Reflexao

Fonte: o autor.

2.3.7 Ray tracing model

O tragado de raios (Ray tracing), determina todos os raios que podem atingir um

receptor R, a partir de um transmissor 7. O modelo opera em duas etapas (MOLISCH, 2011):

* Todos os raios que podem transferir energia da localizagao de 7, para a localiza¢do de Ry

sdo determinados. Isso geralmente € feito por meio do principio da imagem. Os raios que

chegam ao R, por meio de uma reflexdo mostram o mesmo comportamento que os raios de

uma fonte virtual localizada onde uma imagem da fonte original (em relacdo a superficie
refletora) seria localizada (veja a Figura 14);

* Em um segundo passo, as atenuacdes (devido a propagacdo do espaco livre e coeficientes

de reflex@o finita) sdo calculadas, fornecendo assim os pardmetros de todos os componente

multipercurso (multi-path components).
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Figura 14 — Principio da imagem. Circulos em cinza: fontes virtuais correspondentes a um tinico
reflexo. Circulos brancos: fontes virtuais correspondentes a reflexdes duplas. Linhas
pontilhadas: raios das fontes virtuais para o RX. Linhas tracejadas: reflexdes reais.
Linhas sdlidas: linha de visada

Fonte: Molisch (2011).

Outros modelos de pequena escala bastantes citados na literatura, incluem: Rayleigh
fading model, Rice fading model e Nakagami-m fading model. Esses modelos sdo classificados

como estocasticos e sdo discutidos em detalhes em Damosso e Correia (1999).

2.4 Algoritmos Baseados em Impressao digital

Algoritmos para posicionamento indoor baseados em impressao digital podem ser
classificados em deterministicos e probabilisticos. Algoritmos cldssicos deterministicos incluem
kNN e redes neurais artificiais (HUI, 2017) e (ZHENG et al., 2017). A principal vantagem dos
métodos deterministicos € a facilidade de implementa¢do. Esses métodos podem ser facilmente
implementados com base em algoritmos como kNN e a complexidade computacional é fre-
quentemente baixa (HE; CHAN, 2016). Algoritmos probabilisticos sao baseados em inferéncia
Bayesiana e buscam estimar a probabilidade do alvo pertencer a uma posi¢ao especifica dada
uma observacdo RSS (LIU et al., 2007). As proximas secdes discutem sobre a aplicacdo desses

algoritmos ao problema posicionamento.
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2.4.1 k-nearest neighbors (k-NN)

O Algorimto kNN é um dos mais conhecidos e utilizados em reconhecimento de
padrdes. Trata-se de um algoritmo ndo paramétrico que classifica um novo objeto baseado na
similaridade em relagdo as classes. O procedimento de classificagdo consiste em calcular a
distancia entre o objeto observado e as k classes mais préoximas. Uma vez identificado as k
classes mais proximas, classificar-se-a a observagdo a classe mais comum entre seus vizinhos.
Este procedimento € ilustrado na figura 15. Perceba que ao ser obtida uma observacao X,
implementa-se um circulo ao redor dessa observaciao que capture os 5 vizinhos mais préximos.
Baseado nesta regra o k-NN, entdo classificaria a observagdo como pertecente a classe dos pontos

negros.

Figura 15 — Exemplo do algoritmo k-NN para k = 5

Y
>4

Fonte: Duda e Hart (1973).

No caso mais simples deste algoritmo, quando k = 1, chamado de 1 Nearest Neighbor
(1—-NN), simplesmente classifica-se o objeto a classe mais préxima. Formalmente o kNN ¢&

definido da seguinte forma:

Definicao 2.4.1. Sejam <(xg1),x§1), e ,x](\})), wl) ) <(XEN),x§N), e ,x](év)), (ON),um conjunto

de N pares representando um conjunto de treinamento, em que ;,i = 1,2,--- N, € defi-



53

I(J') c Rd,i,j =1,2,.-- N pertence. Considere
()

i

nido como um conjunto de classes ao qual x

y = (y1,y2,- ,¥nN), uma observacdo ndo classificada pertencente a0 mesmo espago de x
()

i

, 0
objetivo € classificar essa nova observagao ao par <(x ), a)i> mais similar. Este procedimento
€ realizado calculando-se a distancia entre os y e todos os vetores X pertencentes ao conjunto
de treinamento. Existem varias métricas de distancia, as mais comuns sao (KELLEHER et al.,
2015):

¢ Distancia euclidiana:

N
dx,y) =1/} (xi—y)’ (2.31)
i=1
¢ Distancia Manhattan:
N
d(x,y) =Y [xi— ] (2.32)
i=1

¢ Distancia Minkowski:

N ,
d(x,y) = (Z ‘Xi_Yi‘p> (2.33)
i=1

Matematicamente a distancia entre duas instincias deve satisfazer as seguintes
condicdes (DUDA; HART, 1973):
* Nio-negatividade: d(x,y) > 0;
* Reflexividade / identidade: d(x,y) =0 <= x=Y;
* Simetria: d(x,y) = d(y,X);
* Desigualdade triangular: d(x,y) +d(y,z) > d(x,z);

O k-NN foi proposto por Fix e Hodges (1951) como uma alternativa aos métodos de
classificagdo tradicionais, nos casos em que se encontra dificuldade em estimar os parametros das
densidades de probalidades. Este algoritmo tornou-se popular, apds algumas de suas propriedades
formais serem discutidas por Cover e Hart (1967), que provaram que quando a quantidade de
dados se aproxima do infinito, a classificagdo de um vizinho mais préximo € limitada pelo dobro
do erro assintético como a regra de Bayes, independente da métrica de distincia aplicada. Isso é

formalmente apresentado no teorema 2.4.1.

Teorema 2.4.1. Seja X um espaco métrico separdvel. Sejam x, fief>, tal que com probabilidade
um x é (i), um ponto de continuidade de f| e f>, ou (ii) um ponto de medida de probabilidade

maior que zZero. Entdo, o risco NN assintotico R (probabilidade de erro) tem os limites



54
R* < RVN(o0) < 2R*(1 —RY)

O teorema 2.4.1 implica que a probabilidade de erro do classificador 1 —NN é menor
que o dobro da probabilidade de erro da regra de Bayes, para um conjunto de treinamento
suficientemente grande.

Esse algoritmo quando aplicado ao problema de posicionamento indoor, inicialmente
recebe um vetor RSS e busca as k impressdes digitais mais proximas ao vetor de entrada. Na
sequéncia, o algoritmo aloca o alvo na posi¢do que possui uma distribui¢cdo de sinal mais similar

ao vetor de entrada, conforme a definicdo 2.4.1. O algoritmo 1 resume este procedimento.

Algoritmo 1: Aplicacdo do k-NN ao problema de localizacdo indoor

Input: rp = {rpi,rps,..,rpy} € R" representando um conjunto de pontos de referéncia.
Um inteiro k, representando o nimero de vizinhos mais préximos.
Um vetor de sinal s = {RSS|,RSS>,- -+ ,RSSn }.
Output: Um posicionamento 2D ou 3D tomando como base o ponto de referéncia mais
similar.
1: Obtenha os k pontos de referéncia mais proximos;
2: fori=1toN do
3:  Calcule a distancia entre s e todos RSS’s com relagdo aos pontos de referéncia mais
proximos;
4: end for
5: Aloque a observacdo s no ponto de referéncia mais proximo e retorne a posi¢ao deste

ponto de referéncia como estimativa de posicionamento do usudrio.

2.4.2 Redes Neurais

As redes neurais artificiais foram introduzidas por McCulloch e Pitts (1943). A rede
proposta possuia as seguintes caracteristicas: as entradas e saidas dos nds bindrias; a ativagcao de
um neurdnio € bindria; rede conectada por caminhos direcionados e ponderados; cada neurénio
possui um limite u#. Se a entrada no neurdnio for maior que o limite, o neur6nio € ativado; uma
fun¢do de ativacio e um tnico neurdnio de saida, y. A figura 16 ilustra a arquitetura basica dessa

rede.
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Figura 16 — Arquitetura do modelo McCulloch-Pitts
X

N
XN+1

XN+M

Fonte: O autor.

Nos anos 1950, Rosenblatt (1958), a partir do modelo desenvolvido por McCulloch
e Pitts (1943), apresentou o conceito de perceptron, um modelo particular de aprendizado
supervisionado, que se tornou fundamental na formagao posterior de redes neurais. Durante a
década de 1980, o interesse renovado na rede neural foi alimentado por muitos pesquisadores que
contribuiram para o desenvolvimento de diversas aplicacoes (MALOBERTTI; DAVIES, 2016).
Alguns trabalhos importantes nesse sentido, incluem: Kohonen (1988) e Hopfield (1988).

Uma ANN pode ser definida como um modelo matemético para procesamento de
informacdo que simula o comportamento do cérebro humano. A estrutura basica de uma ANN
€ composta por um conjunto de neuronios artificiais que recebem como entrada um vetor de
sinal x = (x1,xp,---Xx,). Para cada entrada, atribui-se um peso sindptico, a partir do vetor w =
(Wr1,Wi2, - - Wi) €, em seguida, € obtida a soma referentes as entradas ponderadas. Na etapa
seguinte € aplicada uma func¢do de ativacdo e um valor de limite que ird gerar o resultado de saida
(KRIESEL, 2007). Existem vdrias fun¢des de ativacdo. Algumas dessas funcdes sao ilustradas

na figura 17. A figura 18 ilustra o modelo de rede neural em questao.
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Figura 17 — Diferentes Funcdes de ativacao: (a) Limiar, (b) pseudo-linear, (c) sigmoide e (d)
Gaussiana

{a) {b)

s

i (d}
Fonte: Jain et al. (1996).

Figura 18 — Modelo bésico de neurdnio ndo liear
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Fonte: Haykin (1998).

O modelo apresentado na figura 18, possui uma entrada especial chamada de bias
denotada por by, com o objetivo ajustar o efeito da entrada da funcao de ativagcdo ¢. Assim, a

saida dessa rede € definida matematicamente pela equagao 2.34 (HAYKIN, 1998).
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Yk = ¢ (uy + by) (2.34)

Em que:
m
ug =Y Wjx; (2.35)
j=1

De um modo geral, as ANN podem ser classificadas em duas categorias (KUMAR,
2004): feed-forward, representada por um grafo aciclico, em que a propagacao do sinal ocorre
apenas no sentido da entrada para a saida. A estrutura bdsica inclui:

* Camada ou n6 de entrada: Os nds da camada de entrada s@o passivos, isso significa que
ndo hd modificacdo dos dados nesses nds. O objetivo é apenas transmitir os sinais de
entrada para a prxima camada;

* Camadas escondidas ou nds escondidos: realiza todo processamento da informacgao e
transferem as informacdes as camadas de saida;

* Camada ou n6 de saida: responsdvel por transmitir o resultado gerado ao mundo externo.

Formalmente uma rede neural feed-forward, pode ser definida como:

Definicao 2.4.2. Uma ANN feed-forward consiste em uma tupla 7 = (G — W, 0, f,y;), em que
G,—, ¢ um grafo aciclico N x N. Considere i — j, representando a conexao de um neurdnio
i a um neurdnio j, com um peso w; € R. Os neurdnios sem predecessores sdo chamados de
neurdnios de entrada, enquanto os neurdnios intermediarios sdo chamados de camadas escondidas.
Assim uma ANN feed-forward com n nés de entrada e m nés de saida pode ser representada

matematicamente através da equacao 2.36.

f ‘R" — Rm,f(X],XZ," : ,Xm) = (y17y2>" : ;yn) (236)

A figura 19, ilustra a arquitetura da rede feed-forward simples, conhecida como MLP
com uma camada escondida.

Uma segunda categoria de ANN € chamada de redes recorrentes (KUMAR, 2004)
que, contrariamente ao modelo feed-forward, apresenta pelo menos um lago de realimentacdo de

neur6nios. Este modelo € ilustrado na figura 20.
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Figura 19 — Arquitetura de uma ANN MLP com uma camada escondida
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Fonte: Haykin (1998).

Figura 20 — Arquitetura de uma ANN recorrente com uma camada escondida

Outputs

Unit-delay

X

Fonte: Haykin (1998).

Uma ANN aplicada ao problema de posicionamento indoor consiste em receber
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como entrada um vetor RSS e as coordenadas relacionadas a0 mesmo. A saida é um vetor
com dois ou trés elementos para o espago 2D e 3D, respectivamente. O algoritmo 2 resume
o procedimento da aplicagdo de uma ANN ao problema de posicionamento indoor a partir do

algoritmo backpropagation (discutido no capitulo 4).

Algoritmo 2: ANN MLP aplicada ao problema de posicionamento indoor
Input: s={RSS|,RSSy, -+ ,RSSn}.

Output: Posicionamento 2D ou 3D.
I: fori=1tot do
2:  Inicializar os valores dos pesos e neurdnios aleatoriamente
3:  Apresentar um padriao a camada de entrada da rede
4:  Encontrar os valores para as camadas escondidas e a camada de saida
5:  Determinar o erro de célculo (Estimativa de posicionamento - Posicionamento real)
na camada de saida.
6:  Ajustar os pesos através da retropropagacgdo dos erros (reduzir o erro a cada iteracao)
7:  Encontrar o erro na camada escondida
8:  Ajustar os pesos e retornar ao passo 2.
9: end for

10: return Posicionamento 2D ou 3D do alvo.

2.4.3 Inferéncia Bayesiana

A inferéncia Bayesiana consiste no uso de probabilidades condicionais para obter
conhecimento sobre quantidades desconhecidas, baseado em informagdes a priori. Este tipo
de inferéncia € baseada no teorema de Bayes, que foi desenvolvido pelo matemético Thomas
Bayes (BAYES, 1763), como uma consequéncia de seu interesse em probabilidades inversas. O

teorema 2.4.2, apresenta formalmente este conceito IVERSEN, 1984).

Teorema 2.4.2. Sejam P(H) a probabilidade a priori de H, isto é, a probabilidade de H ocorrer
antes de D ser observado, P(H | D) a probabilidade a posteriori, em outras palavras, a probabi-
lidade de H ocorrer dado que D ocorreu e P(D | H), uma fungdo chamada de verossimilhanga,
que representa a inversa da probabilidade condicional P(H | D), entdo o teorema de Bayes é

dado pela equacdo definida em 2.37:
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P(H|D):w

Considere o problema de se encontrar um estimador pontual para o parametro 6

(2.37)

para a populag@o com distribui¢do f(x | 0). Seja 7(0) a distribui¢o a priori sobre 6. Suponha

que uma amostra aleatdria de tamanho n, denotada por x = (x1,x,---,xy), € observada. A
distribui¢do de 0 | x, é dada pela equacdo 2.38 (WALPOLE; MYERS, 2009).
0)r(0
(0 |x)= M (2.38)
8(x)

Em que g(x) é a distribuicdo marginal de x, dada por:

Yo f(x]|0)7(0) Para 0 discreto
g(x) = (2.39)
Jr f(x|0)7(6)d(6) Para 6 Continuo

e Jp f(x]0)7(0)d(0) é uma generaliza¢do da integral de de Riemann, chamada de
integral de Riemann-Stieltjes.

Note que g(x) é constante com relagdo a 6, o que significa que podemos reescrever

a equacao 2.38, como (PUZA, 2015):

m(6]x) = w (2.40)
ou da seguinte forma:

n(60]x) = cf(x|6)7(6) (2.41)
emquek=f(y)ec=1/C.
Também podemos escrever que (DUDA; HART, 1973):

(6]x) o< £(x|6)7(6) (2.42)

Em que o representa o simbolo de proporcionalidade. Para enfatizar que a proporci-

onalidade é dada especificamente com relacdo a 0. tem-se que:
7(0x) = f(x/0)7(6) (2.43)
A equagdo 2.43, pode ser reescrita resultando na equagdo 2.44:
7(0]x) & L(x|0)7(0) (2.44)

Em que L(x|0), é chamada de fung¢do de verossimilhanga. Assim podemos resumir
a equacdo 2.44, como: probabilidade a posteriori = verossimilhanca x probabilidade a priori.
O problema de posicionamento indoor a partir desse conceito € definido da seguinte

forma:
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Definicdo 2.4.3. Sejas = {01,02,--- ,0n} 0 vetor RSS observado na fase on-line e Z;(x,y,z),
parai=1,2,--- /N, um conjunto de posicdes armazenadas no radio map na fase off-line, em
que cada posicao € candidata a posi¢ao do alvo, tal que Uf-vzl P = . representa o espago de
posicionamento. Selecione &; se P(Z; |s) > P(Z|s), fori,j=1,2,--- ,N and i # j. Esta

classificacdo formalmente € obtida aplicando a equacdo 2.45, o que resulta em:

P(7i]5) = ?2;’(%) — Ploop, ;(Z )| it (2.45)

Algoritmo 3: Inferéncia Bayesiana aplicada ao problema de Posicionamento indoor
Input: s = {01,02, - ,0n}

Output: Posicionamento indoor 2D ou 3D.
1: fori=1to N do
2:  Calcule P(Z; | s) baseado na equagao 2.45.
3: end for
4: Aloque o usudrio em Z(x,y,z), parai=1,2,--- /N, em que

Pi(x,y,z) = argmax P(Z; | s)

Neste capitulo, foram discutidos os fundamentos matematicos dos métodos de
triangulagdo, impressao digital e de proximidade. Uma comparacdo Qualitativa entre esses
métodos foi apresentada ao final da secdo 2.1.

Sistemas de posicionamento para ambientes fechados baseados nas tecnologias Wi-Fi,
Bluetooth, RFID, Dead Reckoning, Posicionamento Actistico € Posicionamento por Luz visivel
foram discutidos na sec¢do 2.2. Os modelos de propacgdo e os e algoritmos para posicionamento
indoor, foram abordados nas se¢des 2.3 e 2.4 respectivamente. No capitulo seguinte, discute-se

em detalhes os dois primeiros IPS’s propostos, kmeans-NB e kKNN-Bayes.
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3 SOLUCOES PROPOSTAS I E II (kMEANS-NB E kNN-BAYES)
3.1 Introducao

Neste capitulo sdo propostos dois algoritmos aqui chamados de kmeans-NB e kKNN-
Bayes, como solu¢des ao problema de posicionamento em ambientes fechados. O primeiro
algoritmo proposto consiste em combinar um algoritmo de andlise de agrupamentos chamado
de k-means proposto em Lloyd (1982) e uma versao simplificada do teorema de Bayes definido
na equacao 2.45, chamada de Naive Bayes (NB) (DUDA; HART, 1973). O segundo algoritmo,
composto por um combinagdo entre o kNN e o teorema definido em 2.45, determina o posiciona-
mento do alvo, a partir da constru¢ao de um estimador que implementa uma regido em torno do
RSS médio observado, de forma a capturar um total de k observacdes mais proximas.

As solugdes propostas estao fundamentadas nos conceitos de estatistica Bayesiana
e utilizam a técnica de impressdo digital discutida no capitulo 2 como estrutura bdsica para
estimativa de posicionamento. Como discutido no capitulo 2, nesta técnica, os vetores RSS sdo
obtidos em N RPs com posi¢des 3D predeterminadas. Em cada RP, as medicdes sdo obtidas em
relacdo a todos os APs. Estendendo esse conceito, essas medi¢gdes sdo realizadas em diferentes
alturas z = {z1,22,-- ,zn } € com o dispositivo mével direcionado para o norte, sul, leste e oeste.
Este procedimento visa tornar o radio map mais robusto, maximizando assim a precisdao do

posicionamento. A matriz definida em 3.1 e a figura 21, exibem este conceito.

o o 0
rPlZ] rPZZ] rPNZ]
o o o
rPiy, TP2;, " TIDPN
RP=| = 2 7% o (3.1)
2 0 0
TPlzy TP2zy “°° TPNzy

em que ¢ = {0°,90°,180°,270°}, representa as dire¢des norte, sul, leste e oeste.
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Figura 21 — Impressdo digital obtida em diferentes alturas
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Fonte: o autor.

As secoes 3.2 e 3.3, discutem em detalhes os algoritmos

3.2 Método proposto I - kmeans-NB

Na secdo anterior, foi definida uma matriz (equacao 3.1) de RPs com RSS obtidos
em diferentes alturas e posi¢des. Este procedimento corresponde a primeira etapa da fase off-line.
A partir das observagdes armazenadas no radio map, a segunda etapa da fase off-line, consiste
em particionar o espaco indoor em subconjuntos disjuntos chamados de clusters. Quando este
procedimento € finalizado, o algoritmo NB € aplicado e o alvo é alocado em um desses clusters,
obtendo-se seu posicionamento a partir do centroide do cluster. Formalmente este procedimento

¢é definido como:

Definicao 3.2.1. Considere o problema de particionamento do espago indoor (matriz de RPs
definida na equacdo 3.1) em P clusters que representam os setores ou regides nos quais os
RPs serdo alocados. Para cada um desses clusters define-se um conjunto de centréides ¢
com coordenadas cartesianas escolhidas aleatoriamente na primeira iteracdo e com base na
coordenada média dos RPs, a partir da segunda iteragdo. O particionamento € obtido, calculando-

se a distancia entre cada RP e os centroides, atribuindo-se cada RP ao cluster que possui o
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centroide mais proximo. Este procedimento € repetido até que nao haja mudanca de RPs entre os
clusters. O algoritmo algoritmo k-means, realiza tal particionamento minimizando uma func¢ado
objetivo, chamada funcdo erro quadrético, definida pela equacao 3.2 (HAN et al., 20006).

X
E=Y ¥ [ 62)

j=lrpe®;

em que Hrp —¢j||, representa a distancia 3D entre cada RP e os centroides cj. O
algoritmo 4 resume o problema de particionamento a partir do algoritmo k-means, enquanto que
a figura 22, ilustra um exemplo de particionamento indoor composto por 500 RPs em 20 clusters

para o caso 2D.

Figura 22 — Alocacdo de 500 RPs em 20 clusters com o algoritmo k-means
whichCluster
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Fonte: o autor - (exemplo implementado na Linguagem R).
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Algoritmo 4: Algoritmo k-means

Input: Um vetor x = {x,x2,--- ,xy} € R"
Numero de clusters
Output: Um conjunto de clusters P.
1: Defina aleatoriamente um conjunto centroide cy,cy,- -, Cg.
2: fori=1to K do
3: ci:{xeX|i:argminlngkHri—chz}
4: end for
5. fori=1to K do
6: ¢ =argmingern Y yec, ||Z — X|?
7: end for
8: repeat
9:  Retorne ao passo 1

10: until que ndo haja movimento de dados entre os clusters.

Quando o processo de particionamento € finalizado, t€m-se a seguinte configuragao:

* Cada RP, possui uma coordenada 3D definitiva %(x,y,z), parai = 1,2,--- N e um vetor
s associado a esta coordenada;

» Sdo atribuidas probabilidades para cada um dos clusters, conforme o conhecimento da
frequéncia de usudrios em cada uma desses clusters ou uniformemente, isto é, considerando
que P(P;),i=1,--- N sejam equiprovaveis.

Ap0s este procedimento, a fase off-line estara finalizada. Na fase online a partir da
leitura do vetor s, o posicionamento do alvo é obtido com base na equacao 2.45, resultando na
equacgao 3.3.

P(s|P:)P(Pi) _ P(01,02, -, on|Pi)P(P:)
P(s) P(01,02," -+ ,0N)

P(Pils) = (3.3)
Pela regra do produto (SCHUM, 1994), t€m-se que:
P(01,02,-++ ,0n|Pi) = P(o1]02, -+ ;on,Pi) X, -+, xP(on-1]on, Pi)P(on|Pi)  (3.4)

De forma a reduzir o custo computacional do sistema com o célculo da equagdo 3.3,
quando se faz necessdrio a aquisi¢ao de um grande volume de dados, iremos considerar que

o; 1L oj|P;, Vi, j, 1 <i,j <N. Isso significa que P(01,02,--- ,on|P;) é dado pela equagdo 3.5.
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N
P(oi | 0i41,-++ 0N, Pi) = P(o; | i) = [T P(s|P:) (3.5)

i=1

Assim, a probabilidade de alocacdo do alvo na parti¢do P dado s é simplificado para:

P(?’S) OCP(iPi,Ol,--- ,0N> (36)
OCP(?,‘) XP(Ol,--- ,0N|Ti) (3.7)
OCP(fP,') XP(01|P(fP,') Xoeee XP(0N|P(iPi) (38)

N
o P(P)[]P(s|P) (3.9)
i=1

A equacgdo 3.9 é uma versao simplificada do teorema de Bayes, conhecido como
naive Bayes. Trata-se de um modelo de rede Bayesiana (discutido no capitulo 4) em que os
atributos estdo associados apenas a classe, representada como o né raiz da rede. Para mais
detalhes sobre este classificador veja: Friedman ef al. (1997) e Duda e Hart (1973).

Ap6s a identificagdo da particdo que resulta em médxima probabilidade, estima-se a
posi¢ao do usudrio a partir da coordenada do centroide dos RPs.

Existem vérios métodos para estimativa de P(s|P). Dois métodos amplamente
utilizados, sdo o método histograma e kernel (WASSERMAN, 2006) e (SILVERMAN, 1986).

Estes métodos sao discutidos a seguir:

Definicao 3.2.2. Considere P(s|P) como uma fun¢do densidade de probabilidade (FDP) denotada
por fx(x) que deve ser estimada com o minimo de suposi¢oes possiveis através de um estimador
fx(x), em que a qualidade da estimativa é obtida através da equacdo 3.10 (WASSERMAN,
2006).

R=E(L) (3.10)

e ques
L= [(Fe() — () G110
L = [(Feo) ~ fx)d= [ Fdx=2 [ il fedst [ Lde G12)

Em que & € um pardmetro de suavizagdo dos dados ndo negativo chamado de
bandwidth (largura de banda). O ultimo termo da equagdo 3.12, ndo depende de h, assim,

obtém-se (WASSERMAN, 2006):
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J(h) = / (Fe () = fe () 2dx = / P0)dx—2 / Fe()dx (3.13)
em que:
EWJ(h)) =R(h) +c (3.14)

Definicao 3.2.3. Seja f(_l) (x) o estimador de densidade apds ter removido a i-ésima observagao.

Definimos /(1) como um score chamado de validagio cruzada do risco dado pela equagio 3.15.

N
J(h) = /( )dx— —; (3.15)

O método mais simples e antigo para estimativa de probabildiade € conhecido como
histograma. Este método subdivide o espago de fx(x) com suporte [0,1] em M bins de tamanhos

iguais, dados pela equacido 3.16.

1 1 2 M—1
Bi=10,—),Bhb=|—,— |, . By=|—,1 3.16
1 |:7M)7 2 |:M7M)7 s DM |: M 7] ( )

Definicdo 3.2.4. Seja h = A%, pj= fB,- fx(x)dxe Y =Y¥ | I(x; € B}), a estimativa de fx(x) a
partir do método histograma € dado pela equacdo 3.17 (WANG et al., 2012).

pj
h

A

Jx(x) =

™M=

I(xi EBJ') (3.17)

Il
—_

i
A figura 23 ilustra a distribuicdo do RSS em uma regido especifica para diferentes

nameros de bins.

Figura 23 — Histogramas do RSS em uma regido especifica para diferentes nimeros de bins
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Fonte: o autor - (exemplo implementado na Linguagem R).
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Para estimar a P(s|?P), a partir deste conceito, obtém-se a distribuicao de frequéncia
dos sinais no ambiente. O objetivo € verificar a frequéncia de cada intervalo RSS em relagdo a
todas as parti¢des P.

Outro método bastante conhecido, é a estimativa de densidade kernel (WASSER-
MAN, 2006). Esse método estima fx (x) determimando o nimero de observa¢des RSS dentro de
uma regido fixa com comprimento igual a b centrada na média de s, representada como s. Este

conceito € ilutrado na figura 24, com uma regido centrada em x com b = 0, 5.

Definicao 3.2.5. Seja X;,i =1,2,--- ,N com N € N, denotando uma amostra de N observacdes,

K : R — R, a estimativa de densidade kernel é dada pela equagdo 3.18 (WASSERMAN, 2006):

N _ VY.
fX(x)ZlZ%K (’“ hx‘) (3.18)

iz

em que: n representa o tamanho da amostra e K(e) é a fungdo Kernel que deve
satisfazer as seguintes condicoes:
(1) K ndo negativo;
(i) JpKx(x)dx=1;
(iii) h > 0.
Uma func¢ao amplamente utilizada neste caso, € o Kernel guassiana. Assim, a esti-
mativa P(s|P) pode ser modelada através de uma distribui¢do normal (essa e outras distribuicdes

sdo apresentadas no anexo A) dada pela equacdo 3.19 (ROOS et al., 2002):

1Y 1 1 (0—0i\’
fx(x):]v;hme)q? [—5 (0 ho) ] (3.19)

Figura 24 — Estimativa de fx(x) a partir do método kernel

F

xo + 0.5bF--
T
Ty beed @

x9 — 0.5bp--

— o o= W

b o o . w a ws a e

5['-1 — DE"I!J .Tl .T-l +DDE}‘

Fonte: Theodoridis e Koutroumbas (2008).
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Uma fungéo geral para K(e), é dada pela equacdo 3.20 (FUKUNAGA, 1990).

m (2 (72 1 (2 B "
K(X) = (nn)n/glg‘Z/ng()ﬁ) ‘rn‘A‘l/zexP [_ {I’ll—(‘(;im% XT(rZA) IX}

em que m € o parametro que determina a forma da fungdo kernel. Param =1, a

(3.20)

equacao 3.20, se reduz a kernel gaussiana. Quando m — oo, a equagdo 3.20 se reduz a uma
kernel uniforme (hipereliptica). A matriz A determinada a forma do hiper-elipsdide, r, controla

o tamanho ou volume do kernel e I'(a) é a fungdo gama dada pela equagdo 3.21.
(o) = / x* e Prgy (3.21)
0

A implementacao do IPS em questao € resumida no algoritmo 5 e na figura 25.

Algoritmo 5: Algoritmo kmeans-NB para posicionamento indoor 3D

Input: rp = {rpi,rps,..,rpn} € R" que representa o vetor de pontos de referéncia.
Numero de clusters P representando o nimero de clusters.
Um vetor de sinal s = {01,02,-- ,0on}.
Output: Posicionamento 3D a partir do centroide das coordenadas dos RPs
1: Defina um conjunto de centroides cy,c», - ,cp com coordenadas aleatdrias para cada
cluster.
2: repeat
3:  Calcule as distancias entre os RPs e os centroides usando a equagdo 3.2 e atribua
cada ponto ao cluster com centroide mais préximo.
4:  Recalcule os centroides de cada cluster com base nas coordenadas dos RPs.
5: until que ndo haja movimento de dados entre os clusters.
6: fori=1to N do
7:  Calcule P(P|s) baseado na equagdo 3.9.
8: end for
9: Aloque o usudrio ao cluster que resulta em maxima probabilidade.
10: Obtenha o centroide dos RPs.

11: Retorne o posicionamento 3D baseado na coordenada obtidas no passo 10.
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Figura 25 — Arquitetura do IPS kmeans-NB
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3.3 Método II - KNN-Bayes proposto

A implementacdo do IPS com base neste método, consiste na estimativa da probabi-
lidade a posteriori na equagao 2.45 através do algoritmo kNN.

Na fase online, apds a leitura do vetor s, define-se uma regiao (aqui discutida como
uma hiperesfera com volume V) centrada em s € que capture k vizinhos mais proximos de s.
Usualmente o valor de k deve ser pequeno comparado ao nimero total de observacdes RSS no
ambiente, denotado por N (FUKUNAGA, 1990). Em Gramacki (2017), é sugerido k ~ VN.

Ap6s o procedimento de captura dos pontos mais similares, verifica-se a frequéncia
de cada observacgdo com relagdo a todos os setores (regides de alocacdo do usudrio). Assim, um
setor € selecionado para se estimar o posicionamento do alvo, se possui a maior frequéncia de
observagdes entre todos os setores. Este procedimento de estimativa de densidade para N =25 ¢
k=5/N=16e k=4, é apresentado nas figuras 26 e 27, para os casos 2D e 3D, respectivamente.

Formalmente esse procedimento de estimativa de densidade aplicado ao problema

de posicionamento indoor para o espago R?, é definido como:

Definicao 3.3.1. Sejam 0,07, ,0p, 0 total de observacdes RSS no setor i, parai =1,2,--- | N,
diremos que UY_, 0; = n, fRz (x) € a distancia da estimativa entre § e os k vizinhos mais préximos
e ¢4 € o espaco ocupado (V) para uma hiperesfera em d dimensdes, dada pela equagdo 3.22

(FUKUNAGA, 1990).

d/2 dj2
¥/ T

k. (d/2)!  T(dj2+1) (3.22)
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Dessa forma, a probabilidade do setor i, parai = 1,2,--- N, é dado pela equacao
3.23 (DUDA; HART, 1973) e a probabilidade de s é estimada como a razdo entre as observacoes

capturadas pela hiperesfera e o produto entre N e V. Dessa forma a estimativa de densidade €

dada pela equacdo 3.24 (THEODORIDIS; KOUTROUMBAS, 2008).

P(S) % (3.23)
k&
Pis) = NegRIx) ~ NV (3-24)

Figura 26 — Estimativa de P(x) parad =2e k=35
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Fonte: o autor.

Figura 27 — Estimativa de P(x) parad =3 ek =4

Fonte: o autor.
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A func¢do de verossimilhanca € estimada a partir da razdo entre o total de observacdes
de um setor especifico capturadas pela esfera, definido por k; e o produto entre n e V, o que

resulta na equacao 3.25.

ki
Pis|S)= (3.25)

Assim, a probabilidade do setor ser selecionado para estimar posicionamento do alvo

¢ dado pela razdo entre entre k; e k, conforme a equagdo 3.26.

— ki
P(s) f—{/ k
Esse procedimento de estimativa da probabilidade a posteriori através do algoritmo

kNN ¢é discutido em detalhes em Fukunaga (1990), Duda e Hart (1973), Gramacki (2017) e

p(sts) = 2L

Theodoridis e Koutroumbas (2008). A implementacdo do IPS em questao € resumido através do
algoritmo 6 e da figura 28 (O procedimento de posicionamento 3D € o mesmo, com a diferenca

que uma esfera deve ser implementada).

Algoritmo 6: Algoritmo kNN-Bayes para posicionamento indoor 3D

Input: tp = {rp,rp2,---,rpn} € R" que representa o vetor de
pontos de referéncia.

Um vetor de sinal s = {01,02,---,0n}.

Output: Posicionamento 3D a partir do centroide das coordenadas dos
RP’s do setor que apresenta o maior nimero de observacoes
capturadas pela esfera.

I: obtenha k = vN

2: Implemente uma esfera de volume V' que capture os k vizinhos
mais proximos de S.

3: for i=1 to N do

4:  Selecione o setor com o maior quantidade de observacoes

capturadas pela esfera.

5: end for

6: Obtenha o centroide dos RPs do setor selecionado.

7: Retorne a posicionamento 3D baseado nas coordenadas obtidas

no passo 6.
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Figura 28 — Exemplo de aplicacdo do algoritmo kNN-Bayes em um ambiente com cinco setores
para o caso 2D
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Fonte: o autor - exemplo implementado através do sotfware Sweet Home 3D (ETEKS, 2000).

Note que na figura 28, tém-se quatro possiveis setores para se estimar a localizacao
do alvo (setores 1,2,4 ¢ 5. O setor 3 neste caso ndo foi selecionado, pois seus pontos ndo foram
capturados pela esfera). Dentre esses setores, o 5 apresenta maior frequéncia de observagdes
similares a S (-48dBm) que os demais. Assim esse setor € selecionado e o posicionamento 3D do

alvo é obtido através do centroide das observagoes.
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3.4 Conclusao

Nessa secdo, foram propostos dois algoritmos baseados em estatistica Bayesiana
para ao problema de posicionamento indoor 3D. A primeira solu¢cdo prosposta consiste em
combinar os algoritmos k-means e naive Bayes, uma versao simplificada do teorema de Bayes,
em que que os atributos do vetor s s@o independentes um dos outros dado os setores. A segunda
solucdo, estima a probabilidade a priori da equacdo em definida em 2.45 através do algoritmo
kNN. No préximo capitulo apresentaremos uma solugdo para o problema de posicionamento
baseado em sistemas multiagente, utilizando uma rede neural profunda e uma rede Bayesiana

que estd fundamentada nos conceitos relacionados ao algoritmo naive Bayes.
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4 METODO PROPOSTO III - IPS-MAS
4.1 Introducao

Aqui, a solugdo proposta chamada de sistema de posicionamento baseado em sis-
temas multiagente (IPS-MAS), foi desenvolvida a partir de duas hibridizacdes. Primeiro o
método ML foi combinado com o método de impressdo digital com o objetivo de reduzir a
regido de aquisi¢@o dos vetores de sinais. Depois, uma hibridizagdo entre uma rede Bayesiana
/ Bayesian network (BN) e uma rede neural profunda (DNN), foi implementada, de modo que
esses algoritmos possam funcionar de forma integrada com o objetivo de maximizar a precisao

do sistema de posicionamento.
Definicao 4.1.1.

Uma BN, denotada por # = (G, 0), é um grafo direcionado aciclico / directed
acyclic graph (DAG), com G = (V,A) definido por um par composto de vértices (V) que repre-
sentam um conjunto de variaveis aleatérias, {#1, %3,---, ¥} e arestas ou arcos (A) represen-
tando a dependéncia entre essas varidveis aleatdrias. 6 representa o conjunto de probabilidades
condicionais relacionadas a cada varidvel aleatdria. Se existe um arco no sentido de #] para
5, diremos que 7 € pai de V2. Assim a probabilidade conjunta P(#1, 72, -+, ¥n), € dada pela
equacdo 4.1.

[1Pi | 74, Y5, Yioy) =[] P(% | pais(¥7)) (4.1)
Na figura 29, a probabilidade conjunta P(A,B,C,D,E,F), considerando:
V={A,B,V.D.E,F}eA={(A,B),(A,C),(A,D),(B,E),(C,E),(D,E),(E,F)}, ¢

expessa como P(A)P(B|A)P(C|A)P(D|A)P(E | B,C,D)P(F | E).



76

Figura 29 — Exemplo de uma rede Bayesiana com varidveis aleatérias V = {A,B,V,D,E F}

Fonte: o autor.

O algoritmo 7 Pearl (1988) resume o procedimento de constru¢do de uma rede

bayesiana.

Algoritmo 7: Algoritmo de constru¢ao de rede da Pearl.
1: Defina um conjunto de varidveis aleatdrias 7; relevantes que

descrevem o dominio.

2: Defina uma ordem para as varidveis %;

3: while houver varidveis restantes do

4:  Adicione a préxima varidvel ¥; a rede.

5:  Relacione os vértices %;, de forma a satisfazer a equacio
definida em 4.1.

6:  Defina uma tabela de probabilidade condicional (CPT)
para %;.

7: end while

Definicao 4.1.2.
Uma DNN pode ser entendida intuitivamente como uma rede MLP convencional

com vdrias camadas ocultas (frequentemente mais do que duas). Este modelo de ANN utilizado



71

por Yu et al. (2012) para modelagem de problemas relacionados ao reconhecimento de voz.
Outros trabalhos que discutem sobre esse tipo de rede, incluem: Yu e Deng (2014), Ali e Senan
(2018) e Bengio (2009). A figura 30 ilustra a arquitetura de uma tipica DNN com trés camadas
escondidas enquanto que o algoritmo 8 resume o processo de aprendizado dessa rede através do

algoritmo backpropagation Rumelhart et al. (1986).

Figura 30 — Arquitetura de uma DNN

Camadas
Camada de escondidas Camada de
Entrada ) ,l\ Saida

Fonte: o autor.

Algoritmo 8: Backpropagation.
1: for d in data do

2:  Forwards Pass

W

Apresente um padrdo a camada de entrada da rede que serd propagado
ao longo das conexdes entre entre os neurdnios das vdrias camadas até
ser gerado um padrao nas unidades de saida.

4:  Backwards Pass

5: for layer in layers do

6: Compare o padrio de saida com o padrdo desejado. A diferenca ou
erro € propagada para tras através da rede, modificando-se os pesos.

7: end for

8: end for

9: Retorne estimativa.

4.2 TPS-MAS

Para implementagdo desse IPS, inicialmente aplicou-se o método ML de forma
a estimar .7 (x,y,z) como a coordenada representando a posi¢do do alvo. Esta estimativa é

formalmente obtida pela interse¢ao de quatro esferas centradas em pelo menos quatro APs com
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coordenadas dadas por (x1,y1,21), (x2,¥2,22)," -, (x5, ¥n,2n), cujas distancias para o alvo sdo
dadas por riz, parai=1,2,---,N e obtidas conforme o equagdo 2.8. Quando esse processo é
concluido, a regido de aplicagdo do método de impressao digital € reduzida a uma esfera com
raio r = max(r;), fori=1,2,--- /N, e os vetores s em N RPs com posicdes sdo obtidos conforme
a matriz definida em 3.1. Na fase online do IPS, sinais s@o apresentados a uma BN e uma DNN
(aqui tratadas como agentes inteligentes) que de forma integrada estimam o posicionamento do
alvo.

Um agente inteligente quando relacionado ao problema abordado nessa tese, pode ser
definido como um algoritmo que situado em um ambiente indoor dindmico (AID), aqui definido
como um conjunto de estados discretos & = {eg, e, - ,ey}, é capaz tomar a¢des autbnomas

A ={a,,0a;,---, ay} de forma a maximizar a precisdo do posicionamento do alvo.

Observacao. O termo AID, refere-se ao conjunto de estados que o ambiente pode apresentar
em um dado momento. Para cada um dos estados o agente retorna uma ac¢ao. Assim a resposta r
de um agente pode ser visto como uma sequéncia dada por (WOOLDRIDGE, 2009):
r:eogelgez,--ya]v—;l eN “4.2)
Definicao 4.2.1. Seja R o conjunto de todas as sequéncias finitas possiveis definidas na equacio
4.2, em que R4 representa o subconjunto dessa sequéncia que termina com uma agio e R¢
o subconjunto dessa sequéncia que termina com um estado. Para representar o efeito que as
acdes de um agente t€ém em um ambiente, considere uma funcao de transformacdo, conforme

Wooldridge (2009), dada pela equacao:
T =R = P,(8) (4.3)

que mapeia uma acdo do agente a um conjunto de possiveis estados. Neste sentido,
de uma forma mais geral, um ambiente pode ser definido como uma 3-tupla dado pela equacado

4.4 e um agente como uma fun¢do dado pela equagdo 4.5 (RUSSELL; SUBRAMANIAN, 1995):
E = <8,€0,T> (44)
AG=RE = A (4.5)

Fundamentado nas defini¢cOes acima, a ideia geral deste método proposto € a im-
plementacdo de um sistema composto de multiplos agentes em um ambiente E denotado pelo

par ((AG1,AS9,---,ASGN),E). Esses agentes trabalham de forma integrada e colaborativa com
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0 objetivo de obter maior precisdo para estimativa de posicionamento. A figura 31 ilustra a

arquitetura bésica desse IPS.

Figura 31 — Arquitetura basica de um sistema multiagente IPS

ENTRADAS

AGENTE 1 AGENTE 2 AGENTE N

l
®

POSICIONAMENTO
3D

Fonte: o autor.

4.3 Agente BN

A implementacdo do agente proposto a partir do conceito de rede bayesiana, consiste
em uma variacdo da equacdo definida em 3.9 chamada de arvore aumentada naive Bayes /
tree augmented naive bayes (TAN), proposta em Friedman et al. (1997). Essa variacdo foi
utilizada de forma a considerar a dependéncia do RSS com relacdo ao nivel de ruido / noise level
(NL) no ambiente, estimado a partir da verificacdo do quanto o sinal é atenuado em funcao da
movimentacao de pessoas no prédio, além da atenuag@o quando se incrementa o nimero de APs.

TAN € uma rede Bayesiana em que []5 = 0 e cada atributo possui como pai & e
no maximo mais algum outro atributo. Perceba que este algoritmo € similar ao NB, permitindo,
no entanto, dependéncias entre os atributos. A figura 32 ilustra essa estrutura para o problema

em questao.

Figura 32 — TAN aplicada ao problema IPS

4/ ] N \\\

T P "‘-\\ e - "‘\\ T
/ N\ / \ ; \ / \
(NL) (01) (02)---(ON)
\ / \ / \ / \ )

J \ / \ s \ J
\\\7_ _ e N SN

~—

Fonte: o autor.
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O processo de aprendizado deste agente consiste no conjunto de dados &, que em
um dado momento, estd melhor relacionado aos atributos da rede. Onde & é composto das
informacdes armazenadas no radio-map, assim como a relacdo entre s, o NL e as informacdes
recebidas por um agente responsdvel pela comunicacdo e mediagdo entre os agentes, chamado

de moderador. O algoritmo 9, resume este procedimento.

Algoritmo 9: Processo de aprendizado em uma rede TAN (FRIEDMAN et

al., 1997)
1: Forneca um conjunto de treinamento & (i.i.d).

2: Aplique a versao modificada do algoritmo definido por Chow e Liu (1968).
3: Adicione & como pai de {NL,01,07,-+ ,0n}

4: Obtenha uma 4rvore geradora minima / minimum spanning tree (MST).

5: Transforme a arvore nao direcionada resultante em uma direcionada,

escolhendo uma varidvel raiz e definindo a direcao de todas as arestas.

O passo 2 do algoritmo 9 consiste em calcular /5, (A;;A j| &) entre cada par de atri-
butos, i # j, em que I, (A;;Aj| &) é a informagdo miitua condicional com relagdo a distribuigao
empirica PD em & entre A;, A jdado Z. A versdo modificada do algoritmo proposto por Chow

e Liu (1968) ¢ apresentado na equacgao 4.6.

: 5 Pp(aizajlc)
I(A;;Aj|IC) = Pp(aj;aj;c)log— _ (4.6)
a,;fc / PD(ai|C)PD (a] ’C)

O passo 3 do algoritmo 9, pode ser obtido a partir de dois algoritmos cldssicos em
teoria dos grafos. O algoritmo de Prim desenvolvido por Jarnik (1930) e mais tarde republicado

por Prim (1957) e o algoritmo de Kruskal (KRUSKAL, 1956). Uma MST ¢é formalmente definida

como:

Definic¢do 4.3.1. Dado um grafo ndo direcionado G = (V,A), em que cada aresta (u,v) possui
um peso p(u,v). Encontre um conjunto 7 C conectando todos os vértices V com pesos minimos.
Em que p(T) = ¥(,)er P(4,v). Um conjunto aciclico conectando todos os vértices em que 0
somatorio dos pesos representa o minimo entre todas possibilidades, é chamado de MST. O

algoritmo 10 resume o procedimento para obtencdo de uma MST genérica.
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Algoritmo 10: Obten¢do de uma AGM genérica (PANDEY, 2008)
1. C+{}

2: while um conjunto C ndo formar uma AGM do
3:  encontrar uma aresta segura para A.

4: end while

5: C<+CU{(u,v)}.

6: Retorne C

* Algoritmo de Prim: Este algoritmo inicia selecionando aleatoriamente um vértice v em
um grafo G = (V, A). Em seguida, seleciona-se outro vértice u que se conecta a v tal que
a aresta (u,v) possua o menor peso entre todas arestas incidentes em v. A cada iteragao
escolhe-se um vértice que satisfaca esta condicdo. Este processo € repetido até que se gere

uma AGM. O algoritmo 11 resume esse procedimento.

Algoritmo 11: Algoritmo de Prim
1: Q<+ V|[G]

2: for cada u em Q do

3:  chavelu] < oo

4:  chave[r] < o

5. @]« NIL

6: end for

7: while A fila O nio estiver vazia do
8:  u<— Deleteyin(Q)

9: end while

10: for cada v adj em [u] do

11:  ifvem Qe w(u,v) < chave([u]) then

12: nt[r] + o(u,v)

13: chave([v]) < @ (u,v)
14:  end if

15: end for

* Algoritmo de Kruskal: Implementa uma floresta em que cada vértice € considerado uma

arvore separada‘ Duas arvores se conectam se e somente se a aresta que as conecta possuir
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o menor peso entre todas as opc¢des disponiveis e ndo formar um ciclo.

Algoritmo 12: Algoritmo de Kruskal
1. C+{}

2: for cada vértice v € V[G] do

3:  Ordene as aresta de A em ordem crescente por peso.
4:  Make-Set (v): Cria um novo conjunto {v}
5: end for

6: for cadaa = (u,v) €A do

7. if Find-Set (1) # Find-Set (v): Retorna um ponteiro para o representante
do (tnico) conjunto que contém x. then
8: C+ CU{(u,v)}
9: UNION (u,v)
10:  end if
11: end for

12: The system returns the 3D positioning based on the centroid of the estimates.

4.4 Agente DNN

Formalmente, o agente implementado a partir desse conceito € defindo como:

Definicao 4.4.1. Seja uma DNN com a camada de entrada denotada por camada Cp e a camada
de saida como € para uma DNN com uma € + 1 camadas, entdo a C-ésima camada pode ser

representada pela equacao 4.7.
vi=f(a%),0<c<C 4.7)

em que {ac = (ché_l +b‘) ,Vc,bc} € RNex1 'We ¢ RNxNex o N € R, represen-
tando respectivamente, o vetor de excitagdo, o vetor de ativacdo, a matriz de peso, um neuroénio
especial chamado de bias e o nimero de neurdnios na camada ¢. Considere ainda v’ = 0 € RM*!
uma observagio do vetor, Ny = D é a dimensdo dessa observacdo e f () é uma funcao de ativagdo
(geralmente uma sigmdide ou a tangente hiperbdlica dadas pelas equacdes 4.8 € 4.9 respecti-
vamente (YU; DENG, 2014)) aplicada a v, entdo define-se um o erro quadratico médio com o

objetivo de otimizar os pesos e bias de forma a minimizar o erro dado pela equacao 4.10.
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1
f(a) = g (4.8)
fla) =5 “9)
_ l . 0 2

EQM = 22(6 o(v),W)) (4.10)

em que o(v", W) representa a saida real.

De forma ajustar cada peso na rede proporcionalmente a contribui¢do com relagdo ao
erro geral, aplica-se o algoritmo backpropagation de forma calcular o gradiente (/) da equagao
definida em 4.10, aplicando sistematicamente a regra da cadeia a partir do calculo de multiplas
varidveis. A ideia € que em cada iteracdo seja dado pequenos passos na dire¢do que minimiza o
erro. Assim os pesos e bias a cada iteracao podem ser ajustados conforme as equagdes 4.11 e

4.12 (ALL; SENAN, 2018).

oE
AwS = —n—r 4.11
JE
A = —n——s 4.12
' ob® (+12)

em que 1 é o parametro de taxa de aprendizado. Este parametro esta relacionado
com o tempo de convergéncia do algoritmo. Se 1 for muito pequeno, a descida de gradiente
também ira progredir lentamente. Se for muito grande, a descida em gradiente ultrapassara os
minimos e possivelmente ndo convirja. Nao ha um método sistematico para obtencao do 1n1. No

capitulo 5 discutimos sobre alguns valores abordados na literatura.

4.5 Comunicacao e interacao

A implementacdo da comunica¢do em um sistema multiagente € crucial para garantir
seu bom desempenho. Um agente especial chamado de moderador € responsével pela a comu-
nicagdo e tomada de decisdo entre os agentes da BN e da DNN, evitando a implementagdo de
um modulo de mediagdo em cada um deles. Existem vdrias abordagens para a implementacao
dessa comunicacdo. Uma bastante conhecida € a linguagem de consulta € manipulacdo de
conhecimento / knowledge query and manipulation language (KQML). Essa linguagem foi
desenvolvida no inicio de 1990 sendo parte do projeto American Knowledge Sharing Efforts

(CASTANO, 2018). KQML define um formato comum para mensagens, que no contexto de
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programacdo orientada a objetos (POO), pode ser entendida como um objeto (WOOLDRIDGE,
2009). Cada mensagem possui uma estrutura (que pode ser pensada como a classe da mensagem)
e um conjunto de parametros de performativos representando varidveis de instincia. O algoritmo

13, apresenta a estrutura basica de uma mensagem em KQML.

Algoritmo 13: Estrutura bésica de uma mensagem KQML. (PAN-

DEY, 2008)
1: (KQML - performative

2: :Sender <Agent 1>

3: :Receiver <Agent 2>

4: :language <C>

5: :Ontology <Estimativa de posicionamento>

6: :content <(2.5,0.75,12)>

8: )

Observacao. Uma ontologia representa uma descri¢ido explicita de um dominio (conceitos,

propriedades, restri¢des e assim por diante) (CASTANO, 2018).

Outras abordagens aplicadas a comunicagdo entre agentes sdo discutidas em Jones
(2008), Leondes (2002), Hadzic et al. (2009), Castaio (2018) e Wooldridge (2009).

A figura 33, estende o conceito de MAS ilustrado na figura 31.

Figura 33 — Arquitetura de sistema multiagente IPS com agente moderador

ENTRADAS

BN MODERADOR DNN

POSICIONAMENTO 3D

Fonte: o autor.
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A interacdo dos agentes BN e DNN, foi implementada a partir de um algoritmo
chamado de algoritmo de estimativa de agdo / action estimation algorithm (ACE) proposto por
Weib (1993), que consiste em variagdo do algoritmo de atribui¢do de crédito bucket brigade

proposto por Holland (1985). No algoritmo ACE, inicialmente cada agente AY;, para i =

1,2,---,N, ao oberservar ¢;, parai = 1,2,--- N, determina um conjunto de possiveis acdes
z. b . . j
(possiveis retornos de posicionamento) que podem ser executadas, denotada por a;, em que
a{ C A. Para cada a{ , 0s agentes executam um lance (bid) conforme a equacio 4.13.
. (¢+B)R! :R! >0,
B/(E) = ’ ’ (4.13)

0 : Caso contrario

em que le ¢ um parametro de relevancia associado a cada alj , O representa uma
constante chamada de fator de risco para uma a¢ao executada pelos agentes. Representa uma
fracdo de le que os agentes estdo dispostos arriscar para executarem suas a¢des. § é chamado de
termo de ruido escolhido, cuja o objetivo € evitar que o aprendizado de um agente convirja para
um minimo local. No préximo capitulo € discutido uma regra para obtencao desse termo. 6, é

uma constante chamada de estimate minimum. Finalizado esse processo, os valores de B/ (E)

J

sdo compartilhados com os demais agentes e as agdes a; sdo armazenadas em um conjunto
denotado por CP(E), em que CP(E) = |UY_, A. Em seguida os agentes selecionam as acdes que
resultaram em maiores valores para equacdo 4.13 e armazenam tais acdes em um novo conjunto
chamado de contexto de atividades, denotado por C(E), que representa o conjunto das acdes que
serdo executadas. Este procedimento € formalmente descrito nos seguintes passos (DOWELL;
STEPHENS, 1994):
« CP(E)=UY. | AeC(E)=0;
* Até que CP(E) = 0 faga
— selecione a/ € CP(E), em que B!(E) > BL(E)Val € CP(E);
- C(E)=C(E)Udl;
- CP(E)=CP(E) — <{alj} U{al € CP(E): a};alsio incompatl’veis})
A etapa final desse algoritmo permite que cada agente possa aprender ajustando

suas estimativas R’ para cada acdo selecionada a/ em C(E). Formalmente, este procedimento é
l l

definido conforme a equacao 4.14.

R YaeeBUE)
R/ =R/ —B!/(E)+ + ===
=R B E T Em T e

(4.14)
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em que R, representa uma recompensa fornecida por um agente moderador. Essa
recompensa serd fornecida em funcdo do qudo distante os pontos de posicionamento estao
do centroide dessas estimativas. Isso significa que quanto mais homogéneo C(E), maior a
recompensa. O objetivo € que os agentes possam iterativamente reduzir os outliers. O critério de
R, relacionado a dispersao, € discutido no préximo capitulo. A figura 34 resume a arquitetura

geral do algoritmo ACE.

Figura 34 — Arqultetura IPS-MAS baseado no algoritmo ACE

|
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S "
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(XY,2)16 5(XY,2)17 5(XY,Z) 15 (XY,2)16 5(XY,2)17 5(XY,Z) 4

(XY,2)19 5(XY,Z) 50 5(X,Y,Z) 54 (X.Y,Z)19 5(XY,2) 5 ;(X,Y,Z)zjl

CP(E) CP(E)
BN DNN
Agao: conjunto de Acgdo: conjunto de
estimativas 3D estimativas 3D

J(XY2), (XY2Z)s ;(XY,Z)s (XY,2)s 5(XY2)s ;(XY,Z)g |
(XY2); 5(XY2)s X2 | |(XY2Z); 5(XY2)e 5(XY2),
(XY, 2)10 5(XX,2)11 5(XY,Z), (XY, 2)10 5(XNY,2)11 5(XY,Z) 1,
(XY,2)13 5(XY,2) 14 5(XY,Z)15 (XY,Z)13 5(X.Y,2) 14 (XY, Z)15

C(E) C(E)

Moderator

Recompensa

|
|
I
I
I
I
I
I
I
|
|
I
I
I
I
I
I
I
I
I
|
|
I
I
I
I
I
I
I
I
|
|
|
|
I
: Recompensa
I

I

I

POSICIONAMENTO 3D

Fonte: o autor.

Ap6s N iteragdes, as estimativas de C(E) para os agentes BN e DNN, sdo armazena-
das uma matriz de estimativa denotada por B = (0ij),paral <i<Nel< j<M,entdo o agente
moderador verificard a ocorréncia de outliers e os eliminara caso necessario. As estimativas
restantes, é aplicado o algoritmo k-means de forma particionar a matriz E. Finalizado esse

processo, o agente moderador seleciona P que possui 0 maior nimero de pontos estimados e
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define o posicionamento 3D final do alvo a partir da coordenada do centroide dessa parti¢cdo. O

IPS proposto é resumido na figura 35 e no algoritmo 14.

Figura 35 — Arquitetura geral - IPS-MAS
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Fonte: o autor.
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Algoritmo 14: IPS-MAS para posicionamento 3D baseado na tecnologia

IEEE 802.11 indoor

Input:  Um vetor de sinal s = {01,02, -+ ,on}.

Output: Posicionamento 3D baseado no centroide das estimativas.

1:

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

for i=1 to N do

Recebe as coordenadas (x,y,z) dos APs.
fori=1to N do
Recebe um vetor de sinal s = {01,02, - ,0n}.
end for
Estima a distancia ao alvo rl.2 comi=1,2,--- /N >4 usando algum
modelo de propagacdo.
end for
Centrado em cada um dos APs, implemente uma esfera com raio r.

Estimar uma posicionamento 3D a partir da interse¢do das esferas.
Implemente uma esfera de raio r em torno do ponto 3D estimado, em que
r=max (rj, parai=1,2,--- /N).
fori=1to N do
Leia s em N RPs a partir da regido definida no passo 9, conforme discutido
no capitulo 3, equacao 3.1.
end for
Implemente trés fungdes que representam os agentes moderador, BN e DNN,
em que cada um desses agentes possui uma base de conhecimento, um motor
de inferéncia e um elemento de aprendizado.
Aplique o algoritmo ACE, conforme discutido em Weib (1993).
while i < maxlter do
BN e DNN recebem um conjunto de parametros chamado vetor ou matriz
de percepcio e retorna Eq e E,.
end while
O agente moderador aplica o algoritmo k-means de forma a particionar Eie
5, e alocar o alvo na parti¢io P que possui maior quantidade de pontos
estimados.

Retorne o posicionamento 3D com base no centroide de P
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4.6 Conclusao

Neste capitulo, foi proposto um IPS baseado no desenvolvimento de um MAS
que foi implementado a partir de uma combinagdo dos métodos ML e impressao digital. O
sistema proposto considera a relacdo entre o RSS e o NL, que € influenciado pelo aumento do
nimero de APs e do nimero de pessoas que se deslocam pelo ambiente. No préximo capitulo,
apresentaremos os resultados experimentais, comparando os trés algoritmos propostos com o0s

métodos mais abordados na literatura.
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5 RESULTADOS EXPERIMENTAIS

Este capitulo tem como objetivo resumir os resultados relacionados aos desempenhos
dos algoritmos propostos em um cendrio real. Esses algoritmos foram comparados com outras
sete abordagens amplamente utilizado na literatura (LIU et al., 2007). De forma a realizar
tais comparagdes, varias métricas foram utilizadas, tais como: média, coeficiente de variagdo,
medidas separatrizes e fun¢do de distribui¢do acumulada. Além disso, esses experimentos foram
aplicados a fim de mensurar a influéncia da combinagao entre os métodos ML e impressao digital
na precisao dos algoritmos.

Os experimentos foram conduzidos no primeiro, segundo e terceiro pisos do bloco
académico 707, localizado no Centro de Tecnologia da Universidade Federal do Ceard, em
Fortaleza, com 4rea total de 3791,05m>. Os seguintes setores foram selecionados:

* Térreo: toda regido (espaco de convivéncia);
¢ Primeiro andar: Hall, corredor, sala de aula 11 e 12;
* Segundo andar: Hall e corredor.

As figuras 37 e 38, ilustram respectivamente o bloco e planta baixa referentes ao
primeiro andar. Os vetores s foram obtidos em 180 RPs distribuidos nos trés andares utilizados.
Para cada RP, 25 amostras RSS foram coletadas em quatro dire¢cdes e em trés alturas diferentes
com relacdo a quatro APs selecionados, resultando em 300 valores RSS para cada RP. A tabela 7

apresenta alguns valores adotados na literatura.

Tabela 7 — Alguns valores de RPs e amostras s utilizados na literatura

Referéncia Algoritmo Precisdao Reportada Paridmetros
Cosine similarity WINN 61,2% das estimativas 213 RPs
(HAN et al., 2015) dentro de 2, 0m. (100 amostras - RP)
RADAR NN 50% das estimativas 70 RPs
(BAHL; PADMANABHAN, 2000) dentro de 2,75m (>20 amostras- RP)
GS GS sparse 50% das estimativas 192 RPs
(KHALAJMEHRABADI et al., 2017) recovery dentro de 1.24 m (>100 amostras - RP)
FS-kNN ANN 80% das estimativas 133 RPs
(LIetal., 2016) dentro de 2,5m (>50 amostras - RP)
MDKDE Multidimensional | 90% das estimativas 370 RPs
(HUANG; MANH, 2016) kernel dentro de 1,5m (>30 amostras - RP)

Fonte: o autor.
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Para aquisi¢do de s foi desenvolvido um so frware em C++ para o sistema operacio-
nal Windows, utilizando a interface de programacao de aplicacao / application programming
inter face (API) Native WiFi da Microsoft. O software realiza leituras passivas em modo mo-
nitor a procura dos APs com identificador do conjunto de servigo / service set identification
(SSID) registrados, e entdo aquisicdes RSS sao feitas para cada AP e os valores coletados sdao
salvos em um arquivo de texto e lidos pela linguagem R, na qual foram implementados todos os
algoritmos. A tabela 8, apresenta algumas bibliotecas utilizadas nos experimentos e simulag¢des,

enquanto que a figura 36, apresenta a arquitetura basica de posicionamento.

Tabela 8 — Alguns Packages utilizados nas implementagdes em R.

package Versao
neuralnet 1.33
triangulation | 0.5.0

knnDE 1.6.2

kde 1.10.7

Stats 3.6.0

mxnet 1.3.0
bnclassify 0.4.0

bnlearn 4.4-20180620

Fonte: o autor.

Figura 36 — Arquiterura bdsica - IPS baseado em Wi-Fi

Servidor de
Posicionamento

________________

________________________________

Fonte: o autor.



Figura 37 — Bloco académico 707 - Centro de tecnologia da Universidade federal do Ceard
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Fonte: Superintendencia de Infraestrutura e Meio Ambiente da UFC.
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As méaquinas utilizadas nos experimentos possuem a seguinte configuracao: Dell,
Intel Core i5, 1.8 GHZ, 6 GB RAM, Adapter Dell Wireless 1703 802.11b/g/n (para aquisi¢ao de
dados) e AMD FX-8120 desktop 8GB RAM (implementacao dos algoritmos). Apds a etapa de
aquisicao do sinal, foi realizado um experimento com o objetivo de verificar a variagdo do sinal
no ambiente. Em um ponto fixo (15,2; 0,7 e 7.72 m), durante 300 s foi verificada a intensidade
do sinal com relagdo aos quatro APs utilizados nos experimentos. Os resultados sdo ilustrados
na figura 39. Note que mesmo em uma posicao fixa, as flutuagdes do sinal atingem 10 dB, o que

representa uma variabilidade esperada para um ambiente indoor.

Figura 39 — Variag(”)es da intensidade do sinal em ponto fixo para 0s quatro APs
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Fonte: o autor.

Com relacdo aos parametros dos algoritmos, para o algoritmo kmeans — NB, testou-
se diferentes valores de P. O melhor resultado foi obtido quando P = 50. Para estimativa
do termo P(s|P), aplicou-se o método kernel. Com relagdo ao algoritmo kKNN-Bayes, como
discutido na se¢io 3.3, o valor de k ¢ obtido a partir da v/N, o que resulta em ~ 232. O algoritmo
IPS-MAS foi implementado com uma ANN com quatro camadas ocultas. Numeros diferentes
de neurdnios foram testados para as camadas ocultas. O melhor resultado observado foi de 350
neurdnios. Para essa rede neural, o algoritmo de backpropagation foi utilizado como método de
aprendizagem. Existem diferentes regras na literatura para escolher a taxa de aprendizagem 1

para implementacdo desse algoritmo. Schulz et al. (2013) sugere 0,001 < n <0, 1, enquanto
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Kriesel (2007) sugere 0 < 1 < 1. Nesse sentido, foram testados diferentes valores de 1 através
do coeficiente de correlacao (CC) entre a posicao real do alvo e a posicdo estimada, conforme

sugerido por Schulz et al. (2013). A tabela 9 apresenta os resultados obtidos:

Tabela 9 — Relacdo entre diferentes valores para os parametros de 11 e o CC

DNN n CcC
DNN1 | 0,01 | 0,82
DNN2 | 0,02 | 0,817
DNN 3 | 0,03 | 0,813
DNN 4 | 0,04 | 0,834
DNNS5 | 0,05 | 0,794
DNN6 | 0,1 | 0,72
DNN 7| 0,2 | 0,734
DNN S8 | 0,3 | 0,709
DNN9 | 0,4 | 0,705
DNN9 | 0,5 | 0,698
Fonte: o autor.

Como discutido no capitulo 4, valores muito altos de 11 podem implicar em ndo
convergéncia do algoritmo. Esse fendmeno pode ser observado tabela 10, em que maiores
valores de 7 tentem a resultar em CC menor. Uma exce¢do porém, sio n = 0,04 e n =0,2.
Nesse sentido, escolhemos 1 = 0,04 que resulta em maior CC. Para a BN, aplicamos um
TAN com vértices representados por s, nivel de ruido e informacdes recebidas pelo moderador.
Além disso, usamos a suavizacdo a priori de Dirichlet conforme discutido em Friedman et al.
(1997). O algoritmo ACE, foi implementado segundo discutido em Weib (1993), com o =0, 1,
B e [—%, %} e 0 = R,. A tabela 10 (dispersdo classificada segundo Rangarajan et al. (1992)),

apresenta os valores relacionados as recompensas fornecidas aos agentes em fun¢do do C,.

Tabela 10 — Valores referentes a recompensas em func¢do do C,

C, Dispersao | Recompensa
C, <10% Baixa +10

10% < C, <20% | Média +5

20% < C, <30% | Alta -5

C, > 30% Muito Alta | -10

Como algoritmos para comparagdo, as principais solucdes abordadas na literatura
foram escolhidas. Em Bahl e Padmanabhan (2000), foi provado que o melhor desempenho para
o algoritmo kNN ¢ alcancado para k € (2,4). assim, utilizamos valores de k =2 e 3 com a

distancia euclidiana. O teorema de Bayes definido na equagdo 2.45, foi aplicado utilizando os
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métodos kernel e histograma como abordagens para estimativa da verossimilhanca conforme
discutido na secdo 3.2 e sugerido por Roos et al. (2002). As redes neurais MLP e funcdo de base
Radial / radial basis function (RBF), também foram aplicadas ao problema de forma individual.
Para a MLP, o melhor resultado foi alcancado a partir de 290 e 170 neurdnios para a primeira e
segunda camadas ocultas, respectivamente. Para RBF, esse valor foi de 400 neur6nios.

Com relagdo ao desempenho dos algoritmos, o algoritmo IPS-MAS, apresentou
melhores resultados que os demais. Este algoritmo teve como retorno um erro médio (&;)
inferior a 0,9 m com uma precisao (Z,) de 97,7% e 100% das estimativas dentro de 1,5 m e
2,0 m, respectivamente. Este resultado representa uma diferenca no valor de g, de mais de
22 c¢m em relagdo ao algoritmo mais similar, e mais de 1,55 m em relagdo ao método ML. O
melhor resultado desse algoritmo esta relacionado a dois fatores importantes, a implementacao de
agentes inteligentes funcionado de forma integrada e colaborativa e da combina¢ao dos métodos
ML e impressao digital. Este tltimo fator foi observado por Liu et al. (2007), que discute sobre
a precisio em funcao da hibridizac¢ao de algoritmos.

Uma comparagdo entre todos os algoritmos baseados em impressado digital, incluindo
o erro absoluto &4, &, C,, o primeiro, segundo e terceiro quartis (Q1, Q2 e Q3) e &7, é apresentada

na figura 40 e nas tabelas 11 e 12.

Figura 40 — CDF do erro de posicionamento com 4 APs
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Tabela 11 — Intervalos de classe para as estimativas de posicionamento

: P (B) P (%) Pr (%) Pr(%)
Algoritmo | 1 s <3 5m <5.5m <7.5m
ML 68,2 80,1 87,8 95,1
kNN
k=2 75,8 88 94,8 98,9
NN 76,1 88,7 95,3 99,1
k=3
ANN
MLP 76,2 89 95,8 99,3
ANN
RBF 76,65 89,6 96,5 99,4
Histograma 76,9 90,8 98 100
Kernel 77,2 91,2 98,6 100
kNN-Bayes 74,4 92 98,7 100
kmeans-NB 77,9 93,1 98,9 100

IPS-MAS 97,7 100 100 100

Tabela 12 — Estatisticas das estimativas de posicionamento (Média, coeficiente de variagdo, Q1,
Q2, e Q3 em metros)

Algoritmo En C, Q1 Q2 Q3
ML 2,235 59,70% 1,36 1,73 2,57
kNN =2 1,919 4522% 1,33 1,66 193
kNN =3 1,916 44,16% 1,33 1,66 191
ANN (MLP) | 1,905 43,15% 1,33 1,66 1,90
ANN (RBF) | 1,883 41,89% 1,33 1,65 1,88
Histograma | 1,843 3797% 1,32 1,65 1,86
Kernel 1,832 36,80% 1,32 1,65 1,84
kNN-Bayes | 1,819 36,19% 1,32 1,64 1,83
kmeans-NB | 1,803 35,06% 1,32 1,64 1,81
IPS-MAS 090 38,70% 0,64 0,84 1,19

O algoritmo kmeans — NB, resultou em &, de 77,9%, 93,1%, 98,9% para os in-
tervalos 1,5; 3,5; 4,5 m e g, igual a 1,80 m. Esses resultados foram superiores ao algoritmo
kNN-Bayes, que apresentou precisdes de 77,4%, 92%, 98,7% para os mesmos intervalos e &,
igual a 1,82 m.

Os sistemas implementados a partir do kNN e ANN obtiveram desempenhos proxi-
mos, com uma diferencga do g, de ~ 0,04 m entre o algoritmo com melhor desempenho (ANN
com RBF) e pior desempenho (kNN com k = 2).

Os algoritmos probabilisticos (histograma e kernel, implementados diretamente

através da equacdo 2.45) apresentaram &,, = 1,84 e 1,832 m, respectivamente. As figuras 41
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e 42, ilustram, respectivamente, uma comparagdo entre os algoritmos IPS-MAS e kmeans-NB
em relacdo a distribuicdo de probabilidade do erro para 16 estimativas em comparagao ao

posicionamento real.

Figura 41 — Histograma da distribuicao de probabilidade do erro para 16 estimativas para os
algoritmos IPS-MAS e kmeans-BN.
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Figura 42 — Comparagao dos algoritmos IPS-MAS e kmeans-NB para 16 estimativas
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O algoritmo IPS-MAS também foi testado com o usudrio em movimento (posicio-
namento por trajetéria). O experimento foi repetido 10 vezes nos periodos da manha, tarde e
noite. Os resultados indicam que houve um pequeno decremento na precisao desse algoritmo
em funcdo do deslocamento do usudrio. Os resultados desse experimento estdo apresentados na

tabela 13 e na figura 43.

Tabela 13 — Estatisticas das estimativas de posicionamento para o usudrio em movimento (Média,
coeficiente de variacdo, Q1, Q2 e Q3 quartis em metros

Distancia 0,64 ~ 30m
Repeticoes 30

Total de observagdes RSS coletados | 157
Velocidade 0,65m/s
Coordenadas de Origem (0; 1,0; 3,20 m)
Coordenadas de destino (105 1,0; 6,40 m)
En 0,93

C, 40,34%

Q1 0,64

Q2 0,88

Q3 1,23

Figura 43 — (a) Trajeto real, (b) trajeto estimado com IPS-MAS

a) TRAJETO REAL @ b) TRAJETO REAL @ VS ESTIMADO @

O método ML, amplamente utilizado no contexto de posicionamento outdoor, apre-
sentou piores resultados comparado com outros algoritmos. Como discutido, isso ocorre devido
a alta variabilidade do sinal, caracteristica de ambientes fechados. Com o objetivo de verificar se
o incremento de APs estd relacionado a uma melhor precisdo para este método, uma simulag@o

utilizando o modelo de propagacdio MWM definido na equacdo 2.27, foi implementada de
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forma a obter a precisdo para 7,9,11,12,15,17,19, 21 e 23 APs. Os resultados da simulagdo
indicam que a medida que o nimero de APs aumenta, hd uma melhora na precisdo do sistema
considerando apenas o NL, que resulta do movimento de pessoas em torno do ambiente. A
figura 44 ilustra o incremento da precisdo em funcio do niimero de APs para o intervalo 0 — 4m,

enquanto que a figura 45 ilustra esse mesmo comportamento para o intervalo 0 — 2m.

Figura 44 — CDF do erro de posicionamento para o método ML com 7,9,11,12,15,17,19,21 e
23 APs simulados a partir do modelo de propagacao cost 231 MWM
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Figura 45 — Precisdo em funcio do numero de APs para um erro fixado em 1,5m do posiciona-
mento real para 0 método ML simulado a partir do modelo de propagacao cost 231
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Quando consideramos também o NL causado pelo aumento do nimero de APs, a
precisdo de todos os algoritmos tende a piorar. Nesse cendrio, o algoritmo IPS-MAS também
apresentou melhor desempenho. Isso pode ser explicado pelo fato desse algoritmo ter sido
projetado para considerar os efeitos NL sobre as estimativas. O resultado dessa simulagdo é

mostrado na figura 46.

Figura 46 — Relagdo entre precisdao e NL
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De forma a mensurar o efeito da combinagao da ML e impressdo digital sobre o IPS
(com excegdo € claro do método ML), todos os algoritmos foram implementados considerando
essa combinacdo. Os resultados indicam que houve um melhora significativa na precisao desses
algoritmos. Para o Algoritmo kmeans-NB, por exemplo, esse incremento na precisao foi superior
a 68 cm. A tabela 14 e as figuras 47 e 48, resumem as principais estatisticas relacionadas ao

posicionamento.
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Tabela 14 — Estatisticas das estimativas de posicionamento (Média, coeficiente de variagdo, Q1,
Q2, e Q3 em metros) - Combinagdo ML e impressao digital
Algoritmo En C, Q1 Q2 Q3
ML 245 5578% 142 236 3,36
KNN =2 1,41 4622% 092 142 1,86
kNN =3 1,35 4585% 0,89 1,34 1,79
ANN (MLP) | 1,28 44,88% 0,86 1,28 1,71
ANN (RBF) | 1,26 45,33% 0,83 1,26 1,68
Histograma | 1,23 44,55% 0,81 1,23 1,64
kernel 1,19 4568% 0,77 1,19 1,59
kNN-Bayes | 1,15 45,27% 0,7561 1,15 1,49
kmeans-NB | 1,12 4443% 0,74 1,13 1,45
IP-MAS 090 38,70% 0,64 0,84 1,19

Figura 47 — CDF do erro de posicionamento considerando a combinac¢ao entre os métodos ML
e impressao digital
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Figura 48 — Comparacao da distribui¢do de probabilidade do erro para 16 estimativas para os
algoritmos IPS-MAS e kmeans-BN considerando a combinacado entre os métodos
ML e impressao digital

0.4[ ] ] ]
0.3 _— . 0.4
0.2 2

0.2 -
0.1 2
ol i 0l |/ 1 |

S | = | N | e | S | = | N | ™m e

o o o [ [ |hio e o o o [ |

OO 4 4 AN AN MMt 10 o OO 4 = AN AN MM <At <t 10 o

Distribuicao do erro em metros Distribuicdo do erro em metros
IPS-MAS kmeans-NB

Nesse capitulo apresentou-se os principais resultados relacionados aos algoritmos
propostos. Adicionalmente, uma comparacao entre esses algoritmos e as principais abordagens
baseadas em impressao digital foi apresentada. O experimentos foram realizados no bloco
didatico 707 no centro de tecnologia da Universidade Federal do Ceard. Por se tratar de
um espaco bastante movimentado, torna-se ideal para o teste dos algoritmos propostos. Os
experimentos e simulacdes realizadas podem ser resumidos em da seguinte forma:

* Incialmente todos os algoritmos foram comparados (com apenas o algoritmo IPS-MAS
utilizando a combinacao do método de multilateragdo ML e impressao digital);

* Em um segundo cendrio, testou-se todos os algoritmos baseados em impressao digital,
combinando este método com ML. O objetivo € verificar o efeito dessa combinacao na
precisao dos algoritmos;

* Uma simulagdo computacional foi implementada a fim de verificar os efeitos do incremento
de pontos de acesso (APs) e do niimero de pessoas se movimentando pelo ambiente com
relacdo a precisao dos algoritmos.

Verificou-se que uma combinacgdo entre o método de impressao digital e o método
classico de posicionamento ML pode incrementar significativamente a precisdo de um sistema

de posicionamento indoor. Tomando o algoritmo kmeans-NB como exemplo, o erro médio &,
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foi reduzido em mais 68 cm. Um outro fator relevante consiste no incremento da precisao do
método ML, quando se aumenta o nimero de APs. Porém esse método se mostrou mais afetado
pelo ruido causado pelo incremento de pessoas no ambiente. Por fim, o algoritmo proposto
baseado no conceito de sistemas multiagentes, apresentou os melhores resultados em todos os
cendrios. Este melhor desempenho ndo estd somente relacionado a combinac¢ao dos métodos
ML e impressao digital. A integracao entre os agentes baseados em redes neurais e Bayesianas

tiveram grande contribuic@o nesse sentido.
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6 CONCLUSOES E TRABALHOS FUTUROS

Nessa pesquisa, as principais abordagens e desafios relacionados ao posicionamento
indoor foram discutidos. Além disso, trés solu¢des baseadas em inferéncia Bayesiana para
posicionamento tridimensional foram propostas e comparadas com o0s principais algoritmos
abordados na literatura, inclusive com método de multilateracdo, um dos mais utilizados no
contexto outdoor.

Os experimentos foram conduzidos no primeiro, segundo e terceiro pisos do bloco
académico 707, localizado no Centro de Tecnologia da Universidade Federal do Ceard, em
Fortaleza, com 4rea total de 3791,05 m?. O primeiro algoritmo proposto, consiste na combinagio
dos algoritmos k-means e naive Bayes, enquanto que o segundo tem como base o k-nearest
neighbors e o teorema de Bayes. O terceiro algoritmo foi desenvolvido a partir de um sistema
multiagente composto de uma rede Bayesiana e uma rede neural profunda. Com o objetivo
de maximizar a precisdo do sistema, esse algoritmo considerou além dos vetores RSS, outras
varidveis como parametros de entrada, incluindo o nivel de ruido provocado pelo aumento do
nimero de pontos de acesso e pelo nimero de pessoas em movimento dentro do ambiente. Outro
fator que contribuiu para o bom desempenho do sistema foi a redu¢do da regido de aplicacdo do
método de impressdo digital, através de uma combinag¢do com o método de multilateragdo.

Os algoritmos propostos apresentaram melhor desempenho quando comparados com
os demais, resultando &, =0,90 m, 1,80 m, 1,82 m para os algoritmos IPS-MAS, kmeans-NB e
kNN-Bayes, respectivamente (cendrio em que a combinagdo entre o0 método de multilateracio e
impressao digital foi considerada somente para o algoritmo IPS-MAS) e g, = 0,90m, 1,12 m,
1,19 m, para os algoritmos IPS-MAS, kmeans-NB e kKNN-Bayes, respectivamente (cendrio em
que a combinacgdo entre o método de multilateracdo e impressao digital foi considerada para
os trés algoritmos). Por serem baseadas em inferéncia Bayesiana, as solu¢des propostas sao
bastante eficientes quando integradas com a técnica de impressao digital, pois relacionam as
informagdes atuais e passadas de forma eficiente, o que resulta em bons resultados em relagao
a classificado. Contudo, uma das limitacdes das técnicas em questdo estd relacionada com a
qualidade das informagdes, isto €, uma base de dados robusta € necessdria para que um IPS
baseado nestes algoritmos apresentem bons resultados.

Como relacdo aos trabalhos futuros, pretende-se maximizar a precisao do sistema,
de forma a obter um &,, < 0.5m. Para atingir tal objetivo, certamente serd necessario o desenvol-

vimento de varios métodos e algoritmos hibridos. Trabalhos futuros incluem:
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* O desenvolvimento de IPSs hibridos baseados em angula¢cdo, multilateracdo e impressao
digital;
* O desenvolvimento de IPS’s baseados em andlise de discriminante multipla;

* A automatizacdo do processo de aquisi¢do da impressado digital.
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Flgura 49 — Principais distribui¢des de probabilidade discretas e continuas.

ANEXO
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DISTRIBUICOES DE PROBABILIDADE:

115

Name Distribution Domain 5 [g(s, 8)]"
n
1
plx|8) = = 52 Tk . » "
Normal 02 o—(1/2)02(2—01)? fly =0 . kot . Oye— a2l =2 i)
\2=© . . L3 af
k=1
n
. 1
R £ T e e
rariate e ; ¢ sitive = ¢ :
Normal I&Tz)l"r"2 e=(1/)e=8,)'Os(x-01) gi'ﬁllir(‘ 1 i XX, —20,8:2: 46, 8,0:)
s T - LA 5 n
- k=1
—— plx|f) = . 1y —#a
Exponential et x>0 fl =10 \ - k§1xk fle
0 otherwise )
. P{T|9} 1N 2 —
Rayleigl # =10 = . e "
st 20ze=0" 1> 0 ) \ PR ‘
0 otherwise
p ;r||9} ’ noo o
Mazcwell L gi/2,2, =10 : L5 {2t
6% “ x>0 N =
0 otherwise
r n I/ 7
Byl P{Tle} By = =1 ] (H Ik) 141
. 0 o > — | .. A
Gamma (e e T £ 20 b2 > 0 I T T ST e
0 otherwise T " kZ T
=1
p :r|9} ( ﬁ )1,":1
U(8) +6:+2) T
Beta ( roeorne (- )" fh > —1 - k1 D03 10:42) 0, 0
e 0<z<1 By > —1 n T+ 1) (1)1 72
otherwise T
Poisson Plr|f) = FJ", e =012 .. =0 fie—t
. 1
Bernoulli Plz|f)=07(1-0)" 2=0,1 |[0<f<1 P 1 kzlzrk #5(1 — )=
Palf) = .
Binomial el Rt Ly oy 95(1 — g)m—>
r=01..m .
P(x|6) =
a r;=0,1,....m
m! H 6t ! o n d
Multi ial ! B 1 . g
ultinomial o S = m 2 kgl X ?l:[l :
H ! i=1
iml

Duda e Hart (1973).



	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Lista de Símbolos
	Sumário
	Introdução
	Objetivos
	Objetivo da Pesquisa
	Objetivos Específicos

	Justificativa e Motivação
	Metodologia
	Trabalhos Relacionados
	Publicações
	Organização da Tese

	Fundamentação Teórica
	Métodos para posicionamento indoor
	Triangulação
	Lateração circular
	Lateração Hiperbólica
	Angulação

	Impressão digital
	Proximidade

	Tecnologias de comunicação sem fio para posicionamento indoor
	WLAN (IEEE 802.11)
	WPAN (IEEE 802.15)
	Identificação por radiofrequência (RFID)
	Dead Reckoning
	Posicionamento Acústico
	Luz visível

	Modelos de Propagação para Ambientes Fechados
	one-slope model (1SM)
	Cost231 multi-wall model
	ITU indoor Path Loss Model
	Linear attenuation model
	Wall and floor factor models
	Ray launching model
	Ray tracing model

	Algoritmos Baseados em Impressão digital
	k-nearest neighbors (k-NN)
	Redes Neurais
	Inferência Bayesiana


	SOLUÇÕES PROPOSTAS I e II (kMEANS-NB E kNN-Bayes)
	Introdução
	Método proposto I - kmeans-NB
	Método II - KNN-Bayes proposto
	Conclusão

	Método proposto III - IPS-MAS
	Introdução
	IPS-MAS
	Agente BN
	Agente DNN
	Comunicação e interação
	Conclusão

	Resultados Experimentais
	Conclusões e Trabalhos Futuros
	REFERÊNCIAS
	ANEXOS
	DISTRIBUIÇÕES DE PROBABILIDADE:

