Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/10963
Type: Artigo de Periódico
Title: Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles
Authors: Melo, Mary A. S.
Morais, Weslanny A.
Passos, Vanara Florêncio
Lima, Juliana P. M.
Rodrigues, Lidiany K. A.
Keywords: Biofilmes;Nanotecnologia;Flúor
Issue Date: May-2014
Publisher: Clinical Oral Investigations
Citation: MELO, M. A. S. et al. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles. Clinical Oral Investigations, v. 18, n. 4, p. 1343-1350, maio, 2014.
Abstract: Introduction Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. Objective This in vitro study evaluated the capacity of fluoride releasing and enamel demineralization inhibition of fluoride-releasing nanofilled cement around orthodontic brackets using an artificial caries biofilm model. Materials and methods Forty bovine enamel discs were selected by evaluating surface microhardness and randomized into four groups (n=10): non-fluoride-releasing microfilled composite, fluoride-releasing microfilled composite, resin-modified glass ionomer cement (RMGI), and fluoride-releasing nanofilled composite (FN). After brackets bonding in each disc, the specimens were subjected to a cariogenic challenge through a Streptococcus mutans biofilm model. After the experimental period, the biofilm formed around the brackets was collected for fluoride analysis and the mineral loss around the brackets was determined by integrated demineralization via crosssectional microhardness measurement at 20 and 70 μm from the bracket margin. Additionally, samples of each group were subjected to energy-dispersiveX-ray spectroscopy (EDX) analysis examined under a scanning electron microscopy (SEM). ANOVA followed by Tukey test were applied for fluoride concentration and mineral loss data, respectively. Results At both distances, only RMGI statistically differed from the other groups presenting the lowest demineralization, although there was a trend to a lower demineralization of enamel around brackets in FN group. Similar condition was found to fluoride concentration and EDX/SEM analysis. Conclusions Under the cariogenic exposure condition of this study, the fluoride-releasing nanofilled material had similar performance to fluoride-releasing microfilled materials. Clinical relevance The presence of nanofillers in the fluoridereleasing materials studied did not promote further benefits against caries lesion development around brackets and presented inferior demineralization inhibition than the resinmodified glass ionomer material.
URI: http://www.repositorio.ufc.br/handle/riufc/10963
ISSN: 1432-6981 (print version)
1436-3771 (electronic version)
Appears in Collections:DCOD - Artigos publicados em revistas científicas

Files in This Item:
File Description SizeFormat 
2014_art_vfpassos.pdf1,29 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.