Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/22494
Type: Tese
Title: Anéis quânticos em mono- e bicamadas de Grafeno
Authors: Xavier, Leandro Jader Pitombeira
Advisor: Pereira Junior, João Milton
Keywords: Grafeno;Anéis quânticos;Física do estado sólido
Issue Date: 2016
Citation: XAVIER, L. J. P. Anéis quânticos em mono- e bicamadas de grafeno. 2016. 90 f. Tese (Doutorado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2016.
Abstract in Brazilian Portuguese: Um importante campo da pesquisa em física do estado sólido é a investigação de sistemas de baixa dimensionalidade, nos quais o movimento do portadores de carga está confinado em uma, duas ou três dimensões. Uma importante classe desses sistemas são os anéis quânticos, eles formam um sistema natural para a investigação de fenômenos de interferência quântica e de transportes, como as oscilações de Aharonov-Bohm e correntes persistentes. Por outro lado, o grafeno, uma folha plana de átomos de carbono disposto em uma rede hexagonal, exibe propriedades peculiares como o comportamento pseudo-relativístico dos portadores de cargas próximos do nível de Fermi e espera-se sua aplicação no desenvolvimento de novos dispositivos eletrônicos. Nesse trabalho, estudamos estados localizados de anéis quânticos em monocamada e bicamada de grafeno. Sabe-se que, devido a uma interação com um substrato, uma monocamada de grafeno pode desenvolver um termo de massa na equação de Dirac-Weyl que descreve o comportamento dos portadores de carga na proximidade do nível de fermi. Além disso, uma inversão na massa, obtida através de defeitos no substrato, pode confinar os portadores de carga na interface da mudança do sinal. Estudamos um sistema em que essa inversão se dá ao longo de uma linha circular, portanto formando um confinamento anelar. A dispersão eletrônica foi calcula como função do raio da linha circular e da intensidade do termo de massa induzido tanto analiticamente, utilizando o modelo contínuo, quanto numericamente, utilizando o modelo tight-binding. Nossos resultados mostraram uma boa concordância entre os dois modelos. Além disso os níveis de energia mostraram um comportamento fracamente dependente da intensidade do termo de massa induzidos. Os estados confinados nesse sistema são robusto em relação a desordens no sentido que, nenhuma desordem não magnética pode quebrar a degenerescência de vale e os estados não podem ser retroespalhados, semelhantes a estados topológicos. A influência de um campo magnético nesse sistema também foi estudada e, além das oscilações de Aharonov-Bohm, foi observado que controlando o campo magnético pode-se controlar o vale que os estados pertencem. Submetendo uma bicamada de grafeno a uma diferença de potencial(ddp) heterogênea pode-se confinar o movimento dos portadores de carga, porém, além de um confinamento convencional, há a possibilidade de um confinamento topológico, no qual a ddp aplicada sobre a bicamada inverte de sinal na região do confinamento. Analogamente ao anel na monocamada, propomos um sistema em que essa inversão se dá ao longo de uma linha circular, portanto formando um confinamento anelar em bicamada de grafeno. A dispersão eletrônica foi calcula analiticamente como função do raio da linha circular, da amplitude da ddp e da intensidade de um campo magnético externo utilizando o modelo contínuo. Os estados nesse sistema, semelhantes ao sistema na monocamada, também apresentaram robustez a desordens não magnéticas e a retroespalhamentos.
Abstract: One important field of solid-state physics is the investigation of low-dimensional devices, in which the charge carriers motion is confined in one, two or three dimensions. One important class of such systems are quantum rings, they are a natural systems to investigate quantum interference phenomenon in transport properties, Aharonov-Bohm oscillations and persistent currents. On the other hand, graphene, a planar monolayer of carbon atoms arranged on two-dimensional hexagonal lattice, exhibits peculiar properties like a pseudo-relativistic charge carriers behavior nest to the Fermi level and is expected to lead to the development of new devices. In this work, we studied located states in quantum rings in monolayer and bilayer graphene. One known that, due a interaction with substrate, monolayer graphene can develop a mass term in the Dirac-Weyl equation that describes the charge carriers nest to Fermi level. Furthermore, a mass inversion, obtained through defects on the substrate, can confine charge carriers in the interface of sign change. We studied a system where the sign inversion happens along a circle, therefore, forming a ring-like confinement. The electronic dispersion was calculated as a function of the radius of the circular line defect and the intensity of the mass term induced ether analytically, by continuous model, or numerically, through tight-binding model. Our analytical results show very good agreement with the tight-binding ones. Furthermore, the energies levels are weakly dependent on the intensity of mass term. The states are robust in the presence of disorder, in the sense that non-magnetic can not break the valley degeneracy and are immune to backscattering, like topological states. Also was studied the influence of a external magnetic field and, besides the Aharonov-Bohn oscillations, we found that tunning tha magnetic field, on can control the ground state valley. Under a heterogeneously potential bias, one can confine the charge carriers motion in a bilayer graphene, but, besides the conventional confinement, it is possible to define a topological confinement, in which the potential bias reverse the sign on the confinement zone. Analogously to the monolayer ring, we propose a system where that inversion happens in a circular line, therefore, forming a ring-like confinement in bilayer graphene. The electronic dispersion was calculated analytically as a function of the radius of the circular line, the intensity of potential bias and the intensity of a external magnetic field using the continuous model. The states in such system, similar to the monolayer one, are robust to a non-magnetic disorder and a backscattering.
URI: http://www.repositorio.ufc.br/handle/riufc/22494
Appears in Collections:DFI - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2016_tese_ljpxavier.pdf12,28 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.