Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/27264
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAbreu, Hamilton Ferreira Gomes de-
dc.contributor.authorMasoumi, Mohammad-
dc.date.accessioned2017-11-08T14:17:10Z-
dc.date.available2017-11-08T14:17:10Z-
dc.date.issued2017-01-06-
dc.identifier.citationMASOUMI, M. Role of texture in hydrogen-induced cracking of steel API 5L X70 under various thermomechanical paths. 2017. 152 f. Tese (Doutorado em Ciência de Materiais)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2017.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/27264-
dc.description.abstractPipeline steels are widely used to transport oil and natural gas in long distance in severe environments. Hydrogen-induced cracking (HIC) is one of the most important failure modes in sour environment. Atomic hydrogen produced during surface pipe corrosion diffuses into the steel and traps at defect sites such as inclusions, precipitations, phase interfaces, martensite islands, and grain boundaries. These hydrogen atoms recombine to form hydrogen molecules, leading to the creation of internal pressure within the metal. This reduces ductility, toughness and mechanical properties, leading to HIC nucleation and propagation. The main objective of this thesis was to find a correlation between a role of texture and grain boundary character distribution with HIC crack nucleation and propagation sites. Finally, proposed thermomechanical treatment produced favorable crystallographic textures and significantly increased HIC resistance which is of great interest to petroleum industry. In this thesis, API 5L X70 steel was subjected to thermomechanical processing with various finish rolling temperatures to produce a similar microstructure with different crystallographic textures. The microstructural and textural evolution was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). Then, HIC standard test and electrochemical hydrogen-charging experiments were used to induce HIC cracks in pipeline steels. Then EBSD analysis was carried out to show the HIC resistance improvement via appropriate thermomechanical processing. Present work revealed that significant improving of HIC resistance was obtained through engineering of crystallographic texture by isothermal rolling below non-recrystallisation temperature. The high resistance to HIC is highly important to oil and gas transportation. Electron backscatter diffraction (EBSD) measurements were done along the HIC crack in X70 steel after HIC test. The results showed that {001} grains which parallels to normal direction are weak against HIC propagation, and provide a preferred path to crack propagation. Whereas, grains which lied along {110} and {111} planes parallel to rolling plane showed higher resistance against HIC crack nucleation and propagation and improved HIC resistance. In addition, EBSD data revealed that the high amount of recrystallization fraction with no stored energy is one of the main reasons for a higher HIC resistance. Consequently, increasing the fraction of low angle and coincidence site lattice boundaries related to low {hkl} indexing and correspond to the dense planes is targeted in grain boundary engineering to improve HIC resistance. Increasing the number of {111} and {110} grains, with the goal of minimizing the number of {001} grains and HABs, leads to a reduction in crack nucleation and propagation. In overall, the key finding of this work revealed that significant improvement of HIC resistance was obtained through engineering of crystallographic texture by isothermal rolling at approximately 850°C. Although the rolling schedule suggested in the current study differs from the established industrial production, a significant improvement in HIC resistance by controlling of texture only was achieved. This can be a great motivation for development of an alternative thermomechanical treatment with lower finish rolling temperaturept_BR
dc.language.isoenpt_BR
dc.subjectCiência dos materiaispt_BR
dc.subjectTrincas induzidas por hidrogêniopt_BR
dc.subjectTextura cristalográficapt_BR
dc.subjectAço - Corrosãopt_BR
dc.subjectAço - Propriedades mecânicaspt_BR
dc.subjectCrystallographic texturept_BR
dc.titleRole of texture in hydrogen-induced cracking of steel API 5L X70 under various thermomechanical pathspt_BR
dc.typeThesispt_BR
dc.description.abstract-ptbrAços de tubulação são amplamente utilizados para transporte de petróleo e gás natural em longa distância em ambientes agressivos. Trincas induzidas por hidrogênio (HIC) são um dos modos de falha mais importantes no ambiente em que se é usado. O hidrogênio atômico produzido durante a corrosão da superficial da tubulação difunde-se para o aço e as prende em locais de defeito, tais como inclusões, precipitações, interfaces de fase, ilhas martensíticas e contornos de grão. Estes átomos de hidrogênio se recombinam para formar moléculas de hidrogênio, levando à criação de pressão interna dentro do metal. Isso reduz a ductilidade, tenacidade e propriedades mecânicas, levando a nucleação e propagação do HIC. O objetivo principal desta tese foi encontrar uma correlação entre o papel da textura e a distribuição do caráter dos contornos de grãos com os núcleos de propagação e de nucleação das trincas. Finalmente, o tratamento termomecânico proposto produziu texturas cristalográficas favoráveis e aumentou significativamente a resistência ao HIC que é de grande interesse para a indústria petrolífera Nesta tese, o aço API 5L X70 foi submetido a processamento termomecânico com várias temperaturas finais de laminação para produzir uma microestrutura similar com diferentes texturas cristalográficas. A evolução microestrutural e de textura foi caracterizada por microscopia eletrônica de varredura (SEM), difração de raios X (XRD) e difração de retroespalhamento eletrônico (EBSD). Em seguida, utilizaram-se ensaios padrões de HIC e experimentos electroquímicos com bombardeamento de hidrogênio para induzir fissuras HIC em aços de tubulação. Em seguida, a análise de EBSD foi realizada para mostrar a melhoria da resistência HIC através de processo termomecânico apropriado. O presente trabalho revelou que a melhoria significativa da resistência HIC foi obtida através da engenharia da textura cristalográfica por laminação isotérmica abaixo da temperatura de recristalização. A alta resistência ao HIC é muito importante para o transporte de petróleo e gás. As medidas de difração de retroespalhamento de elétrons (EBSD) foram feitas ao longo da trinca HIC em aço X70 após o teste HIC. Os resultados mostraram que os grãos de planos {001} que são paralelos à direção de laminação são mais propensos a propagação de HIC, e proporcionam um caminho preferêncial para a propagação da trinca. Os grãos que estão ao longo dos planos {110} e {111} são paralelos ao plano de laminação e se mostraram mais resistentes a nucleação e propagação de trincas. Além disso, os dados do EBSD revelaram que a elevada quantidade de recristalização sem energia armazenada por deformação é uma das principais razões para uma maior resistência ao HIC. Consequentemente, o aumento da quantidade de contornos de baixo ângulo e coincident site lattice relacionados à baixa indexação {hkl} e que correspondem aos planos densos é direcionado à engenharia de contornos de grãos para melhorar a resistência a HIC. Em conclusão, aumentar o número de grãos em planos {111} e {110}, objetivando a minimização de grãos em planos {001} e contornos de alto ângulo, leva a uma redução na nucleação e propagação de trincas e a uma melhora de resistência a fragilização pelo hidrogênio. Em geral, a principal descoberta deste trabalho revelou que a melhoria significativa da resistência HIC foi obtida através da engenharia de textura cristalográfica por laminação isotérmica a aproximadamente 850°C. Embora o cronograma de laminação sugerido no presente estudo difira da produção industrial estabelecida, foi alcançada uma melhora significativa na resistência ao HIC somente pelo controle da textura. Isto pode ser uma grande motivação para o desenvolvimento de um tratamento termomecânico alternativo com temperatura de laminação de acabamento mais baixa.pt_BR
Appears in Collections:DEMM - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2017_tese_mmasoumi.pdf14,09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.