Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBessa, Gregório Pacelli Feitosa-
dc.contributor.authorJorge, Luquésio Petrola de Melo-
dc.contributor.authorLima, Barnabé Pessoa-
dc.contributor.authorMontenegro, José Fábio Bezerra-
dc.identifier.citationBESSA, G. P. F. ; JORGE, L. P. M. ; LIMA, B. P. ; MONTENEGRO, J. F. B. (2006)pt_BR
dc.descriptionBESSA, Gregório Pacelli Feitosa ; JORGE, Luquésio Petrola de Melo ; LIMA, Barnabé Pessoa ; MONTENEGRO, José Fábio Bezerra. Fundamental tone estimates for elliptic operators in divergence form and geometric applications. Anais da Academia Brasileira de Ciências, Rio de Janeiro, v. 78, n. 3, p. 391-404, 2006.pt_BR
dc.description.abstractWe establish a method for giving lower bounds for the fundamental tone of elliptic operators in divergence form in terms of the divergence of vector fields. We then apply this method to the Lr operator associated to immersed hypersurfaces with locally bounded (r + 1)-th mean curvature Hr+1 of the space forms Nn+1(c) of constant sectional curvature c. As a corollary we give lower bounds for the extrinsic radius of closed hypersurfaces of Nn+1(c) with Hr+1 > 0 in terms of the r -th and (r + 1)-th mean curvatures. Finally we observe that bounds for the Laplace eigenvalues essentially bound the eigenvalues of a self-adjoint elliptic differential operator in divergence form. This allows us to show that Cheeger’s constant gives a lower bounds for the first nonzero Lr - eigenvalue of a closed hypersurface of Nn+1(c).pt_BR
dc.subjectOperadores elípticospt_BR
dc.titleFundamental tone estimates for elliptic operators in divergence form and geometric applicationspt_BR
Appears in Collections:DMAT - Artigos publicados em revista científica

Files in This Item:
File Description SizeFormat 
2006_art_gpfbessa.pdf568,96 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.