Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/53323
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBarroso, Giovanni Cordeiro-
dc.contributor.authorBelmino, Lucas Martins-
dc.date.accessioned2020-08-05T17:04:35Z-
dc.date.available2020-08-05T17:04:35Z-
dc.date.issued2020-01-24-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/53323-
dc.description.abstractThe increase in electricity consumption has driven advances in the use of small and medium sized generators connected to the distribution system in contradiction to the previous paradigm, where the generation centers are concentrated and far from the loads. Long feeders responsible for connecting supply substations to load centers are associated with losses inherent in electrical components. In this scenario the use of Distributed Generation (DG) can contribute to the supply of energy consumption and provide improvements in power supply reducing system losses and improving voltage profile. However, in order to ensure the benefits of using DGs, positioning and sizing studies are required. Positioning and sizing are mixed integer nonlinear mathematical problems that have their solution set susceptible to accelerated growth as the number of bars in the system or generators increases. In this work we propose an algorithm to evaluate the behavior of losses as a function of the number, capacity and position of DGs allowing the analysis of the number of generating units that provides the greatest reduction of the electrical losses. In the proposed algorithm uses the meta-heuristic Differential Evolution (DE). In addition, for the representation of the electric network is used the concept of list of adjacencies, belonging to the study of graph theory. Once the representation of the distribution network is chosen, Direct-Inverse Sweep Method via Sum of Powers (DMSP) is used to calculate the power flow and the losses calculated by the method are used as an aptitude function to evaluate the possible solutions represented by the individuals. The algorithm then performs the positioning and sizing of the DGs and restarts its execution by updating the number of DGs that must be positioned. The results obtained are used to plot the loss curve and to evaluate its behavior. The algorithm is implemented and, to compare the results, simulations are performed in networks widely used in the literature, IEEE 33 bars and IEEE 69 bars. The positioning performed by DE obtained good results in reducing losses, which are close to the values found in other studies. The curve plotted by the algorithm, however, showed an accelerated reduction of initial value losses, which stabilized with the increase in the number of DGs.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectEvolução Diferencialpt_BR
dc.subjectSistema de Distribuição Radialpt_BR
dc.subjectPosicionamento de Geração Distribuídapt_BR
dc.subjectDimensionamento de Geração Distribuídapt_BR
dc.subjectGeração distribuída de energia elétrica - usopt_BR
dc.titlePosicionamento e Dimensionamento de Geração Distribuída em Rede de Distribuição de Energia Elétricapt_BR
dc.typeDissertaçãopt_BR
dc.contributor.co-advisorSampaio, Raimundo Furtado-
dc.description.abstract-ptbrO aumento no consumo de energia elétrica tem impulsionado avanços no uso de geradores de pequeno e médio porte conectados ao sistema de distribuição em contradição ao paradigma anterior, onde os centros de geração são concentrados e distantes das cargas. Longos alimentadores responsáveis pela conexão das subestações de suprimento aos centros de cargas estão associados a perdas inerentes aos componentes da rede elétrica. Nesse cenário, o uso da Geração Distribuída (GD) pode contribuir com o suprimento da crescente demanda de energia e proporcionar melhorias em parâmetros importantes no fornecimento de energia, tais quais, redução das perdas do sistema e maior adequação do perfil de tensão. No entanto, a fim de garantir os benefícios do uso das GDs é necessário realizar estudos de posicionamento e dimensionamento destas. O posicionamento e o dimensionamento de GDs é um problema matemático não linear inteiro misto, que tem um conjunto de soluções susceptível a um crescimento acelerado à medida que se aumenta o número de barras no sistema ou de geradores. Nesse trabalho é proposto um algoritmo para avaliar o comportamento das perdas em função da quantidade, capacidade e posição das GDs, permitindo a análise da quantidade de unidades geradoras que fornece a maior redução das perdas elétricas. No algoritmo proposto é utilizada a meta-heurística Evolução Diferencial (ED) e, para representação da rede elétrica, é utilizado o conceito de lista de adjacências, pertencente ao estudo da Teoria dos Grafos. Escolhida a representação da rede de distribuição, é utilizado do Método de Varredura Direta e Inversa via Soma de Potencia (MSP) para cálculo do fluxo de potência e as perdas calculadas pelo método são utilizadas como função de aptidão para avaliar as soluções possíveis, representadas pelos indivíduos. O algoritmo proposto então realiza o posicionamento e dimensionamento das GDs e reinicia a sua execução atualizando o número de GDs que devem ser posicionadas. Os resultados obtidos são utilizados para traçar a curva de perdas e avaliar o seu comportamento. O algoritmo é implementado e, para comparar os resultados, são realizadas simulações em redes amplamente utilizadas na literatura, IEEE 33 barras e IEEE 69 barras. O posicionamento realizado pela ED obteve bons resultados na redução das perdas, sendo estes próximos aos valores encontrados em outros trabalhos. A curva traçada pela algoritmo, no entanto, demonstrou uma redução significativa das perdas nos valores iniciais, que estabilizava com o incremento no número de GDs.pt_BR
Appears in Collections:DEEL - Dissertações defendidas na UFC

Files in This Item:
File Description SizeFormat 
2020_dis_lmbelmino.pdf1,99 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.