Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/10849
Tipo: | Dissertação |
Título: | Um Sistema de visão computacional para classificação da qualidade do couro caprino |
Título em inglês: | A Computer vision system for classification of quality goat leather |
Autor(es): | Santos Filho, Edmilson Queiroz dos |
Orientador: | Barreto, Guilherme de Alencar |
Palavras-chave: | Teleinformática;Reconhecimento de padrões;Redes neurais (Computação) |
Data do documento: | 2013 |
Citação: | SANTOS FILHO. E. Q. Um Sistema de visão computacional para classificação da qualidade do couro caprino. 2013. 85 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2013. |
Resumo: | Uma alternativa econômica importante para a região semi-árida do Brasil é a criação de ovinos e caprinos. Além de leite e carne de caprinos/ovinos, as peles são muito apreciadas na fabricação de artefatos finos (por exemplo, sapatos, bolsas, carteiras e casacos). No entanto, devido ao modo extensivo de criação/reprodução e informalidade do abate, as peles de ovinos/caprinos são entregues ao curtume com diferentes tipos e níveis de defeitos. Na indústria, trabalhadores especializados têm a tarefa de classificar/discriminar as peles de acordo com a qualidade das mesmas. Este trabalho é artesanal, demorado e extremamente dependente da experiência do funcionário responsável pela discriminação da qualidade da pele. O mesmo funcionário pode produzir diferentes classificações se ele/ela tiver que reclassificar o lote de pele. Assim, a fim de lidar com esses problemas, neste trabalho, apresentam-se os primeiros resultados de um sistema baseado em visão computacional cujo objetivo é classificar automaticamente a qualidade da pele de caprinos/ovinos. Para isso, comparamos os desempenhos de classificadores estatísticos e neurais utilizando diversas técnicas de extração de características, tais como a Variância das colunas (VAR), Transformada Wavelet de Haar (HAAR), Fatoração em Matrizes Não-Negativas (NMF), Análise de Componentes Principais (PCA) e Matrizes de Co-ocorrência de níveis de cinza (GLCM). Também foram implementados mecanismos de opção de rejeição nos classificadores avaliados. Opção de rejeição é uma técnica usada para aumentar a confiabilidade do classificador em sistemas de apoio à tomada de decisão, que consiste em reter a classificação automática de um item, caso a decisão não seja considerada suficientemente confiável. Já com a utilização da opção de rejeição, de uma forma geral, foi possível observar uma considerável melhora nas taxas de acerto dos classificadores avaliados, às expensas de uma taxa de rejeição relativamente alta. Também foi possível observar que, para os classificadores analisados, os extratores HAAR e GLCM foram menos sensíveis à aplicação da opção de rejeição, em comparação com os resultados obtidos para o caso sem opção de rejeição. |
Abstract: | An important economic alternative for the semi-arid region of Brazil is the goat/sheep farming. Besides milk and meat, goat/sheep skins are much appreciated in the manufacturing of fine artifacts (e.g. shoes, bags & purses, wall ets, and jackets). However, due to the extensive mode of raising/breeding and the informality of slaughtering, sheep/goat farmers deliver to industry skin pieces with different types and levels of defects. Then, at the industry, specialized workers have to classify/discriminate the skin pieces according to their qualities. This handmade work is time - consuming and extremely dependent on the experience of the employee in charge of the skin - quality discrimination. Even the same employee may produce different classifications if he/she is asked to reclassify the skin lot. Thus, in order to handle these problems, in this paper we report the first results of a computer vision based system aiming at classifying automatically the quality of goat/sheep skin pieces. For this purpose, we compare the performances of statistica l and neural network classifiers using several feature extraction techniques, such as Column - Variance (VAR), Haar wavelet transform (HAAR), Non - Negative Matrix Factorization (NMF), Principal Component Analysis (PCA) and Gray Level Co - occurence Matrices (GL CM). We also implemented the reject option in the evaluated classifiers. Reject option is a technique used do improve classifier's reliability in decision support systems. It consists in withholding the automatic classification of an item, if the decision is considered not sufficiently reliable. The rejected item is then handled by a different classifier or by a human expert. By means of an in - depth analysis of the results, it was possible to observe that, without the reject option mechanism, the VAR, NMF a nd HAAR techniques achieved the best performances when associated with the ELM and SVM classifiers. When the reject option mechanism was present, it was observed a considerable improvement of the classification rates, at the expenses of relatively high rej ection rates. It was also possible to observe that, for the evaluated classifiers, the HAAR and GLCM techniques were less affected by the use of the reject option mechanism in comparison to the results achieved for the case without reject option |
URI: | http://www.repositorio.ufc.br/handle/riufc/10849 |
Aparece nas coleções: | DETE - Dissertações defendidas na UFC |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2013_dis_eqsantosfilho.pdf | 4,58 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.