Use este identificador para citar ou linkar para este item: http://www.repositorio.ufc.br/handle/riufc/10852
Título: Um Estudo sobre a extração de características e a classificação de imagens invariantes à rotação extraídas de um sensor industrial 3D
Título em inglês: A Study on the extraction of characteristics and the classification of invariant images through the rotation of an 3D industrial sensor
Autor(es): Silva, Rodrigo Dalvit Carvalho da
Orientador(es): Thé, George André Pereira
Palavras-chave: Teleinformática
Processamento de imagens
Reconhecimento de padrões
Automação industrial
Data do documento: 8-Mai-2014
Citação: SILVA. R. D. C. (2014)
Resumo: Neste trabalho, é discutido o problema de reconhecimento de objetos utilizando imagens extraídas de um sensor industrial 3D. Nós nos concentramos em 9 extratores de características, dos quais 7 são baseados nos momentos invariantes (Hu, Zernike, Legendre, Fourier-Mellin, Tchebichef, Bessel-Fourier e Gaussian-Hermite), um outro é baseado na Transformada de Hough e o último na análise de componentes independentes, e, 4 classificadores, Naive Bayes, k-Vizinhos mais Próximos, Máquina de Vetor de Suporte e Rede Neural Artificial-Perceptron Multi-Camadas. Para a escolha do melhor extrator de características, foram comparados os seus desempenhos de classificação em termos de taxa de acerto e de tempo de extração, através do classificador k-Vizinhos mais Próximos utilizando distância euclidiana. O extrator de características baseado nos momentos de Zernike obteve as melhores taxas de acerto, 98.00%, e tempo relativamente baixo de extração de características, 0.3910 segundos. Os dados gerados a partir deste, foram apresentados a diferentes heurísticas de classificação. Dentre os classificadores testados, o classificador k-Vizinhos mais Próximos, obteve a melhor taxa média de acerto, 98.00% e, tempo médio de classificação relativamente baixo, 0.0040 segundos, tornando-se o classificador mais adequado para a aplicação deste estudo.
Abstract: In this work, the problem of recognition of objects using images extracted from a 3D industrial sensor is discussed. We focus in 9 feature extractors (where seven are based on invariant moments -Hu, Zernike, Legendre, Fourier-Mellin, Tchebichef, Bessel–Fourier and Gaussian-Hermite-, another is based on the Hough transform and the last one on independent component analysis), and 4 classifiers (Naive Bayes, k-Nearest Neighbor, Support Vector machines and Artificial Neural Network-Multi-Layer Perceptron). To choose the best feature extractor, their performance was compared in terms of classification accuracy rate and extraction time by the k-nearest neighbors classifier using euclidean distance. The feature extractor based on Zernike moments, got the best hit rates, 98.00 %, and relatively low time feature extraction, 0.3910 seconds. The data generated from this, were presented to different heuristic classification. Among the tested classifiers, the k-nearest neighbors classifier achieved the highest average hit rate, 98.00%, and average time of relatively low rank, 0.0040 seconds, thus making it the most suitable classifier for the implementation of this study.
Descrição: SILVA. R. D. C. Um Estudo sobre a extração de características e a classificação de imagens invariantes à rotação extraídas de um sensor industrial 3D. 2014. 79 f. Dissertação (Mestrado em Engenharia de Teleinformática) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2014.
URI: http://www.repositorio.ufc.br/handle/riufc/10852
Aparece nas coleções:DETE - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2014_dis_rdcsilva.pdf2,2 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.