Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/12779
Title in Portuguese: Vazamentos de corrente e ineficiência de transporte em nanoestruturas semicondutoras investigadas através de propagação de pacotes de onda
Author: Sousa, Ariel Adorno de
Advisor(s): Chaves, Andrey
Co-advisor(s): Farias, Gil de Aquino
Peeters, François Maria Leopold
Keywords: Nanotecnologia
Semicondutores intrínseco
Sistemas de baixa dimensionalidade
Poços, fios e pontos quânticos
Tunelamento quântico
Pacote de ondas
Nanotechnology
Issue Date: 2015
Citation: SOUSA, A. A. Vazamentos de corrente e ineficiência de transporte em nanoestruturas semicondutoras investigadas através de propagação de pacotes de onda. 2015. 149 f. Tese (Doutorado em Física) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015.
Abstract in Portuguese: Os avanços nas técnicas de crescimento tornaram possível a fabricação de estruturas semicondutoras quase-unidimensionais em escalas nanométricas, chamadas pontos, fios, poços e anéis quânticos. Interesse nessas estruturas tem crescido consideravelmente, não só devido às suas possíveis aplicações em dispositivos eletrônicos e à sua manipulação química fácil, mas também porque eles oferecem a possibilidade de explorar experimentalmente vários aspectos de confinamento quântico, espalhamento e fenômenos de interferência. Em particular, neste trabalho, investigamos as propriedades eletrônicas e de transporte em poços quânticos, fios e anéis, cujas dimensões podem ser alcançados experimentalmente. Para isto, resolvemos a equação de Schrödinger dependente do tempo utilizando o método Split-operator em duas dimensões. Nesta tese, abordamos quatro trabalhos, sendo o primeiro uma analogia ao Paradoxo de Braess para um sistema mesoscópico. Para isso, utilizamos um anel quântico com um canal adicional na região central, alinhado com os canais de entrada e saída. Este canal extra faz o papel do caminho adicional em uma rede de tráfego na teoria dos jogos, similar ao caso do paradoxo de Braess. Calculamos as auto-energias e a evolução temporal para o anel quântico. Surpreendentemente, o coeficiente de transmissão para algumas larguras do canal extra diminuiu, semelhante ao que acontece com redes de tráfego, onde a presença de uma via extra não necessariamente melhora o fluxo total. Com a analise dos resultados obtidos, foi possível determinar que neste sistema o paradoxo ocorre devido a efeitos de interferência e de espalhamento quântico. No segundo trabalho, foi feita uma extensão do primeiro, (i) aplicando-se um campo magnético, onde foi possível obter o efeito Aharonov-Bohm para pequenos valores do canal extra e controlar efeitos de interferência responsáveis pelo paradoxo mencionado, e (ii) fazendo também a aplicação de um potencial que simula a ponta de um microscópio de força atômica (AFM) interagindo com a amostra - este potencial é repulsivo e simula um possível fechamento do caminho em que o pacote de onda se propaga. Assim, neste trabalho, realizamos uma contra-prova do primeiro, onde observamos que com o posicionamento da ponta do AFM sobre canal extra, se diminui o efeito de redução de corrente devido ao paradoxo de Braess. No terceiro trabalho, realizamos uma análise de tunelamento entre dois fios quânticos separados por uma certa distância e calculamos qual a menor distância para qual ocorre tunelamento significativo nesse sistema eletrônico. Este trabalho é de fundamental importância para o manufaturamento de dispositivos nanoestruturados, porque nos permite investigar qual a distância mínima para a construção de um circuito eletrônico sem que haja interferências nas transmissões das informações. No quarto e último trabalho desta tese, investigamos a energia de ligação do elétron-impureza em GaN/HfO2 para um poço quântico. Consideramos simultaneamente as contribuições de todas as interações das auto-energias devido ao descasamento das constantes dielétricas entre os materiais. Foram estudados poços largos e estreitos, comparando os resultados para diferentes posições da impureza e a contribuição da auto-energia para o sistema.
Abstract: Advances in growth techniques have made possible the fabrication of quasi one-dimensional semiconductor structures on nanometric scales, called quantum dots, wires, wells and rings. Interest in these structures has grown considerably not only due to their possible applications in electronic devices and to their easy chemical manipulation, but also because they offer the possibility of experimentally exploring several aspects of quantum confinement, scattering and interference phenomena. In particular, in this work, we investigate the electronic and transport properties in quantum wells, wires and rings, whose dimensions can be achieved experimentally. For this purpose, we solve the time-dependent Schrödinger equation using the split-operator method in two dimensions. We address four different problems: in the first one, the electronic transport properties of a mesoscopic branched out quantum ring are discussed in analogy to the Braess Paradox of game theory, which, in simple words, states that adding an extra path to a traffic network does not necessarily improves its overall flow. In this case, we consider a quantum ringindex{Quantum ring} with an extra channel in its central region, aligned with the input and output leads. This extra channel plays the role of an additional path in a similar way as the extra roads in the classical Braess paradox. Our results show that in this system, surprisingly the transmission coefficient decreases for some values of the extra channel width, similarly to the case of traffic networks in the original Braess problem. We demonstrate that such transmission reduction in our case originates from both quantum scattering and interference effects, and is closely related to recent experimental results in a similar mesoscopic system. In the second work of this thesis, we extend the first system by considering different ring geometries, and by investigating the effects of an external perpendicular magnetic field and of obstructions to the electrons pathways on the transport properties of the system. For narrow widths of the extra channel, it is possible to observe Aharonov-Bohm oscillations in the transmission probability. More importantly, the Aharonov-Bohm phase acquired by the wave function in the presence of the magnetic field allows one to verify in which situations the transmission reduction induced by the extra channel is purely due to interference. We simulate a possible closure of one of the paths by applying a local electrostatic potential, which can be seen as a model for the charged tip of an atomic force microscope (AFM). We show that positioning the AFM tip in the extra channel suppresses the transmission reduction due to the Braess paradox, thus demonstrating that closing the extra path improves the overall transport properties of the system. In the third work, we analyze the tunneling of wave packets between two semiconductor quantum wires separated by a short distance. We investigate the smallest distance at which a significant tunneling between the semiconduting wires still occur. This work is of fundamental importantance for the manufacturing of future nanostructured devices, since it provides information on the minimum reasonable distances between the electron channels in miniaturized electronic circuits, where quantum tunnelling and interference effects will start to play a major role. In the last work of this thesis, we investigate the binding energy of the electron-impurity pair in a GaN/HfO2 quantum well. We consider simultaneously the contributions of all interactions in the self-energy due to the dielectric constant mismatch between materials. We investigate the electron-impurity bound states in quantum wells of several widths, and compared the results for different impurity positions.
URI: http://www.repositorio.ufc.br/handle/riufc/12779
metadata.dc.type: Tese
Appears in Collections:DFI - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2015_tese_aasousa.pdf11,36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.