Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/31146
Title in Portuguese: Introdução ao modelo de Cox
Author: Siqueira, Thales da Silva
Advisor(s): Reinaldo, Luciana Moura
Keywords: Modelo semi-paramétrico
Modelo de Cox
Issue Date: 2017
Citation: SIQUEIRA, Thales da Silva. Introdução ao modelo de Cox. 36 f. TCC (graduação em Ciências Atuárias ) - Universidade Federal do Ceará, Faculdade de Economia, Administração, Atuária e Contabilidade, Fortaleza-CE, 2017.
Abstract in Portuguese: Um dos modelos mais aplicados na análise de sobrevivência é o modelo de regressão de Cox. Suas técnicas podem ser utilizadas na medicina, na engenharia, na análise de seguros e até mesmo para analisar o risco de um cliente se tornar inadimplente, ou seja, este modelo se diferencia dos demais por sua ampla aplicação em diversas áreas e pelo fato de ser um modelo semi-paramétrico, o que lhe permite fazer uso de covariáveis associadas aos indivíduos presente no estudo, como por exemplo, idade, sexo, doenças pré-existentes, renda, grau de escolaridade, local de residência, entre outras, para que desta forma possa modelar o efeito dessas covariáveis sobre o tempo de sobrevivência do indivíduo, que é o objetivo principal da análise de sobrevivência. O objetivo desta monografia foi realizar uma introdução sobre o modelo semi-paramétrico de regressão de Cox, incluindo os métodos de adequação e ajuste aos dados de sobrevivência, proporcionando um breve estudo sobre a análise de sobrevivência. A teoria estudada foi ilustrada com uma aplicação do modelo à um conjunto de dados de pacientes com câncer avançado de pulmão, onde foi analisado o tempo até a morte, que nesse estudo foi considerado o evento de interesse. A aplicação e os resultados encontrados foram satisfatórios, pois através da análise da significância das covariáveis e da análise dos resíduos, foi encontrado o melhor modelo. Utilizou-se o pacote survival no software R para ajuste do modelo.
Abstract: One of the most applied models in survival analysis is the Cox regression model. Its techniques can be used in medicine, engineering, insurance analysis and even to analyze the risk of a customer becoming a defaulter, that is, this Model is different from the others because of its wide application in several areas and because it is a semi-parametric model, which allows it to make use of covariates associated with the individuals present in the study, such as, for example, age, sex, preexisting diseases , Income, educational level, place of residence, among others, so that it can model the effect of these covariates on the survival time of the individual, which is the main objective of the survival analysis. The objective of this monograph is to make an introduction about the semi-parametric Cox regression model, including the methods of adaptation and adjustment to survival data, providing a brief study on the survival analysis. The theory studied is illustrated with an application of the model to a set of data from patients with advanced lung cancer, where the time to death is analyzed, which in this study is the event of interest. The survival package was used in software R for model adjustment.
URI: http://www.repositorio.ufc.br/handle/riufc/31146
metadata.dc.type: TCC
Appears in Collections:CIÊNCIAS ATUARIAIS - Monografias

Files in This Item:
File Description SizeFormat 
2017_tcc_tssiqueira.pdf684,13 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.