Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/35810
Title in Portuguese: Razão áurea: história e suas aplicações matemáticas
Author: Lima, José Antonio Ferreira de
Advisor(s): Felix, Hudson de Souza
Keywords: Segmento áureo
Matemática - História
Aprendizagem
Issue Date: 2015
Citation: LIMA, J.A.F (2015)
Abstract in Portuguese: O objetivo desde trabalho é mostrar uma parte da matemática que é fascinante, cercada de mistérios e poderia estar incluída no currículo escolar: A Razão Áurea. Foram realizadas pesquisas em torno do assunto desde as civilizações antigas até os dias atuais. Levando em conta os aspectos históricos e sociais, foram estudadas várias sociedades: egípcias, babilônicas, gregas, romanas, dentre outras. Abordaram-se também épocas em que pessoas renomadas buscaram aspirações para mostrar em suas artes a fórmula ideal na aplicação desta proporção em suas obras. Pitágoras, um grande filósofo e matemático, demonstrou uma propriedade notável dos diversos pentagramas que, se olhando os segmentos de linha em ordem crescente de comprimento, podem ser provados facilmente, por meio da geometria elementar, que cada segmento é maior que seu antecessor por um fator que é exatamente igual ao Número Áureo. Fibonacci, que ficou conhecido por sua obra Liber Abaci (Livro de Ábaco) escrito em 1202, criou uma sequência que ficou conhecida pelo seu nome e foi expressa em forma de problema envolvendo coelhos em que a expressão foi denotada por uma fórmula. Essa pesquisa mostrou também como essa razão é aplicada nas fórmulas matemáticas envolvendo operações de nível fundamental e médio até chegar o Número de Ouro.
Abstract: The objective of this work is to show a part of mathematics that is fascinating, surrounded by mysteries and could be included in the school curriculum: The Golden Ratio. Surveys were conducted around the subject from ancient civilizations to the present day. Taking into account the historical and social aspects, several companies were studied: Egyptian, Babylonian, Greek, Roman, among others. Is addressed also times when people sought renowned aspirations to display their art in the ideal formula of this proportion in his works. Pythagoras, a great philosopher and mathematician, demonstrated a remarkable property of many pentagrams, that looking at the line segments in order of increasing length, can be proved easily by elementary geometry, each segment is larger than its predecessor by a factor which is exactly equal to the Golden Number. Fibonacci, was known for his work Liber Abaci (Book of Abacus) written in 1202, created a sequence that has become known by his name and was expressed as a problem involving rabbits in which the expression was denoted by a formula. This research has also shown how this reasoning is applied in mathematical formulas involving primary and secondary level operations to get the number of Gold.
Description: LIMA, José Antonio Ferreira de. Razão áurea: história e suas aplicações matemáticas. 2015.32 f. Monografia (Graduação Matemática) - Instituto UFC VIrtual, Universidade Federal do Ceará, Maranguape, 2015.
URI: http://www.repositorio.ufc.br/handle/riufc/35810
metadata.dc.type: TCC
Appears in Collections:MATEMÁTICA - LICENCIATURA (EaD) - TCC

Files in This Item:
File Description SizeFormat 
2015_tcc_jafdlima.pdf1,56 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.