Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/36760
Title in Portuguese: Simulação molecular da adsorção de gases em materiais nanoporosos: captura, caracterização e armazenamento
Author: Gonçalves, Daniel Vasconcelos
Advisor(s): Lucena, Sebastião Mardônio Pereira de
Keywords: Engenharia química
Gases
Adsorção
Adsorption
Molecular simulation
Gas
Issue Date: 20-Aug-2018
Citation: GONÇALVES, Daniel Vasconcelos. Simulação molecular da adsorção de gases em materiais nanoporosos: captura, caracterização e armazenamento. 2018. 118 f. Tese (Doutorado em Engenharia Química)-Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2018.
Abstract in Portuguese: Técnicas de simulação molecular foram utilizadas para predizer a adsorção de gases em materiais nanoporosos através da abordagem de três problemas. No primeiro problema, a captura de H2S em carbonos ativados foi estudada. Um novo valor para a interação H2S-carbono foi proposto a partir de dados calorimétricos. O parâmetro proposto foi validado através da predição da adsorção de H2S em dois carbonos ativados (RB4 e Desorex K43). Este é o primeiro estudo teórico desta natureza. O impacto da presença de CH4 e CO2 na adsorção de H2S também foi avaliado. A adsorção multicomponente (H2S/CH4, H2S/CO4 e H2S/CH4/CO2) foi calculada em três tamanhos de poros de carbono. Um efeito cooperativo no qual o CO2 melhorou a adsorção de H2S em cerca de 40% no poro de 8,9 Å foi observado. A análise da distribuição de energia e o posicionamento das moléculas dentro do poro evidenciaram este incremento. No segundo problema, as propriedades de adsorção das microestruturas de carbono resultantes do ataque oxidativo previstas pela Dinâmica Moleular reativa (rMD) foram investigadas. As configurações das simulações de caracterização foram validadas através de testes com estruturas de diferentes tamanhos, utilizando diferentes modelos moleculares e sujeitas à diferentes condições de contorno. As isotermas e as entalpias de adsorção de N2 e de Ar em estruturas com diferentes graus de ataque foram calculadas e relacionadas aos dados experimentais de carbono. A estrutura com 25% dos átomos gaseificados reproduziu a adsorção em carbonos ativados oriundos de diferentes precursores e produzidos através de diferentes processos. As estruturas previstas pela rMD apresentaram um ótimo desempenho na reprodução das propriedades de adsorção de diferentes carbonos. No terceiro problema, oito estruturas metal-orgânicas (MOFs) foram investigadas visando o armazenamento de gás natural. As quantidades adsorvidas a 5,8 bar e a 65 bar a 298 K foram calculadas considerando o metano puro e as misturas CH4/CO2 e CH4/H2O, conforme os limites da especificação do gás natural. As MOFs que não apresentam sítios metálicos aberto foram minimamente afetadas pela presença do CO2 e do H2O. Entretanto, a interação destas espécies com as MOFs que possuem sítios metálicos abertos se mostrou prejudicial. Foi observado que apenas 25 ppm de água podem reduzir o volume entregue de metano em mais de 20%. Uma análise detalhada do mecanismo de adsorção que leva a desativação também é apresentada.
Abstract: Molecular simulation techniques were applied to predict gas adsorption in nanoporous materials. Three problems were approached. In the first problem, we studied the H2S adsorption in activated carbon. A value for H2S-carbon interaction was proposed from calorimetric data. The proposed forcefield parameter was validated by predicting H2S capture on two activated carbons (RB4 and Desorex K43). This is the first theoretical study of this nature. The impact of the presence of CH4 and CO2 on H2S adsorption was also evaluated. Multicomponent adsorptions (H2S/CH4, H2S/CO4 and H2S/CH4/CO2) were calculated in three sizes of slit-pores of carbon. We observed a cooperative effect in which CO2 improves H2S adsorption in the 8.9 Å pore size. The analysis of energy distribution and the positioning of the molecules inside the pore evidenced this improvement. In the second problem, we adsorption properties of carbon structures resulting from the oxidative process predicted by reactive Molecular Dynamics (rMD) have been investigated. Simulation features, like the type of molecular model and the boundary condition, were evaluated. Isotherms and enthalpies of adsorption of N2 and Ar on carbon surfaces with different degrees of etching were calculated. These results were compared to experimental data. The structure with 25% of gasified atoms reproduced the adsorption on activated carbons made from different precursors and through different processes. Structures predicted by rMD presented superior performance in prediction of adsorption experimental data. In the third problem, we investigated eight representative metal-organic frameworks (MOFs) for natural gas storage. Adsorbed amounts of pure methane and its mixtures with CO2 and H2O at 5.8 and 65 bar at 298 K were calculated within the limits specified for natural gas. MOFs without open metal sites were minimally influenced by the concentrations of CO2 and H2O. However, the interaction with these species on MOFs with open metal sites proved to be harmful. We found that concentrations as low as 25 ppm of water can reduce the delivered volume of methane by more than 20%. A detailed analysis of the adsorption mechanisms leading to deactivation is also presented.
URI: http://www.repositorio.ufc.br/handle/riufc/36760
metadata.dc.type: Tese
Appears in Collections:DEQ - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2018_tese_dvgonçalves.pdf4,34 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.