Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/45003
Title in Portuguese: Problems about mean curvature
Title: Problems about mean curvature
Author: Gama, Eddygledson Souza
Advisor(s): Jorge, Luquesio Petrola de Melo
Co-advisor(s): Serrano, Francisco Martín
Lira, Jorge Herbert Soares de
Keywords: Solitons de translação
Problema de Jenkins-Serrin
Cilindro grim reaper inclinado
Tilted grim reaper cylinder
Jenkins-Serrin problem
Translating solitons
Issue Date: 25-Jul-2019
Citation: GAMA, Eddygledson Souza. Problems about mean curvature. 2019. 139 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2019.
Abstract in Portuguese: Essa tese está dividida em três capítulos. No primeiro capítulo faz-se uma breve introdução das ferramentas necessárias para o desenvolvimento do trabalho. Por sua vez, no segundo capítulo desenvolve-se a teoria de Jenkins-Serrin para os casos vertical e horizontal. No tocante o caso vertical, prove-se apenas a existência de solução do problema de Jenkins-Serrin do tipo I, quando M é rotacionalmente simétrico e tem curvaturas sectional não-positiva. No entanto, com respeito ao caso horizontal, prova-se a existência e unicidade global, naturalmente admitindo que o espaço base M tem uma particular estrutura. A terceira, e íltima parte dessa tese é dedicada a prova de um resultado de caracterização de translating solitons em R n+1 . Mais precisamente, prova-se que os únicos exemplos C 1 −assintóticos a dois meio-hiperplanos fora de um cilindro são os hiperplanos paralelos ao vetor e n+1 e os elementos da família associada ao tilted grim reaper cylinder.
Abstract: This thesis is divided into three chapters. In the first chapter, it is done a brief introduction of the main tools necessary for the development of this work. In turn, in the second chapter it develops the Jenkins-Serrin theory for vertical and horizontal cases. Regarding the vertical case, it only proves the existence of the solution of Jenkins-Serrin problem for the type I, when M is rotationally symmetric and has non-positive sectional curvatures.However, with respect to the horizontal case, the existence and the uniqueness is proved in a general way, namely a.ssuming that the base space M has a particular structure. The ing solitons in R n+1 . More precisely, it is proved that the unique examples C 1 −asymptotic to two half-hyperplanes outside a cylinder are the hyperplanes parallel to e n+1 and the elements of the family associated with the tilted grim reaper cylinder in R n+1 .
URI: http://www.repositorio.ufc.br/handle/riufc/45003
metadata.dc.type: Tese
Appears in Collections:DMAT - Teses defendidas na UFC

Files in This Item:
File Description SizeFormat 
2019_tese_esgama.pdftese eddygledson2,18 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.