Please use this identifier to cite or link to this item: http://www.repositorio.ufc.br/handle/riufc/55999
Title in Portuguese: Emprego de técnicas de data mining na identificação de padrões relacionados às doenças oculares em pacientes pediátricos atendidos em um Hospital Universitário de uma cidade do sudoeste do Brasil
Title: Use of data mining techniques to identify patterns related to eye diseases in pediatric patients treated at a university hospital in a city in southwest Brazil
Author: Prata, Adriana Faria Gappo
Rodriguez, Martius Vicente Rodriguez y
Barbosa, Adauto Dutra Moraes
Keywords: Mineração de Dados
Oftalmopatias
Saúde da Criança
Issue Date: 2020
Publisher: Revista de Saúde Digital e Tecnologias Educacionais
Citation: PRATA, Adriana Faria Gappo ; RODRIGUEZ, Martius Vicente Rodriguez y ; BARBOSA, Adauto Dutra Moraes. Emprego de técnicas de data mining na identificação de padrões relacionados às doenças oculares em pacientes pediátricos atendidos em um Hospital Universitário de uma cidade do sudoeste do Brasil. Rev. Saúde Digital Tec. Educ., Fortaleza, CE, v. 5, n. 3, p. 01-13, ago./dez. 2020. Disponível em: http://www.repositorio.ufc.br/handle/riufc/55999. Acesso em: 12/01/2021.
Abstract in Portuguese: Objetivo: Empregar técnicas de data mining no tratamento de dados coletados de prontuários de pacientes, identificando atributos mais relevantes e ferramentas de data mining mais adequadas para análise de dados na área da saúde. Métodos: Estudo transversal realizado com dados secundários de pacientes pediátricos atendidos no setor de oftalmologia de um Hospital Universitário, localizado no sudeste do Brasil, de janeiro de 2018 a dezembro de 2019. O programa IBM SPSS Statistics v.25 foi utilizado para caracterizar a amostra quanto às características demográficas e consulta oftalmológica dos pacientes. Utilizou-se a ferramenta R versão 4.0.0 para criação de um modelo de classificação pelo algoritmo Naves Bayes, cuja função era avaliar as variáveis para prever o diagnóstico de cada paciente. Resultados: A amostra foi de 196 olhos. A média de idade dos pacientes foi de 10,04 anos. 53% eram do sexo masculino e 66,7% eram pardos. As principais queixas que levaram os pacientes a procurar atendimento oftalmológico foram: Olho torto (26,9%) e Baixa Acuidade Visual (25,3%). O modelo de classificação criado obteve uma taxa de acerto do diagnóstico de 73%. Conclusões: Foi identificada a importância da informatização do sistema hospitalar e da formação de profissionais de saúde na área de ciência de dados.
Abstract: Objective: To employ data mining techniques to treat data collected from patient records, identifying the most relevant attributes and the most appropriate data mining tools for analyzing health data. Methods: Cross-sectional study was conducted with secondary data from pediatric patients seen in a University Hospital's ophthalmology sector located in southeastern Brazil from January 2018 to December 2019. The IBM SPSS Statistics v.25 was used to characterize the sample regarding demographic characteristics and ophthalmological consultation of patients. The tool R version 4.0.0 was used to create a classification model by the Naves Bayes algorithm, whose function was to evaluate the variables to predict each patient's diagnosis. Results: The sample consisted of 196 eyes. The mean age of the patients was 10.04 years. 53% were male, and 66.7% were brown. The main complaints that led patients to seek eye care were: Crooked eye (26.9%) and Low Visual Acuity (25.3%). The classification model created obtained a diagnosis accuracy rate of 73%. Conclusions: The importance of computerization of the hospital system and the training of health professionals in data science were identified.
URI: http://www.repositorio.ufc.br/handle/riufc/55999
metadata.dc.type: Artigo de Periódico
ISSN: 2525-9563
Appears in Collections:NUTEDS - Artigos publicados em revistas científicas

Files in This Item:
File Description SizeFormat 
2020_art_afgprata.pdf405,59 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.